ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 621.373.826

Study of the Q-switching regimes of the loop cavity of a Nd:YAG laser using an external plasma mirror

For Russian citation (Opticheskii Zhurnal):

Лебедев В.Ф. Исследование режимов модуляции добротности петлевого резонатора Nd:YAG лазера внешним плазменным зеркалом // Оптический журнал. 2017. Т. 84. № 2. С. 19–27.

 

Lebedev V.F. Study of the Q-switching regimes of the loop cavity of a Nd:YAG laser using an external plasma mirror [in Russian] // Opticheskii Zhurnal. 2017. V. 84. № 2. P. 19–27.

For citation (Journal of Optical Technology):

V. F. Lebedev, "Study of the Q-switching regimes of the loop cavity of a Nd:YAG laser using an external plasma mirror," Journal of Optical Technology. 84(2), 82-88 (2017). https://doi.org/10.1364/JOT.84.000082

Abstract:

This paper discusses the self-modulation regimes of a multiloop cavity with external optical action initiated by the reflection of the laser beam’s focused radiation from the laser target plasma created by it. The self-modulation regime does not have a distinct threshold character. It is found that an intense Q-switching regime is characterized by the presence of a mode-locking regime. It is demonstrated that the self-Q-switching regime of a loop cavity can be used to automatically identify substances by the method of laser-spark emission spectroscopy.

Keywords:

phase conjugation, multiloop cavity, Q-switching regime, laser plasma, laser-spark emission spectroscopy

Acknowledgements:

The author is grateful to L. B. Kochin for participating in the first experiment on the observation of the self-modulation regime of a cavity based on the target plasma of the laser and to G. V. Burkovsky for help in adjusting the layout of the multiloop cavity.

The research was supported by the Russian Scientific Foundation (14-23-00136).

OCIS codes: 140.3535, 140.3540, 140.3410, 140.3480, 300.6365

References:

1. V. A. Batanov, K. S. Gochelashvili, B. V. Ershov, A. N. Malkov, P. I. Kolesnichenko, A. M. Prokhorov, and V. B. Fedorov, “Effect of the generation of hard x-rays of microsecond duration on a target with Q switching of a laser by a plasma mirror,” JETP Lett. 20, 185–187 (1974) [Pis’ma Zh. Eksp. Teor. Fiz. 20(6), 411–416 (1974)].
2. P. Mulser, R. Sigel, and S. Witkowski, “Plasma production by laser,” Phys. Rep. 6(3), 187–239 (1973).
3. V. A. Batanov, D. A. Dement’ev, A. N. Malkov, A. M. Prokhorov, and V. B. Fedorov, “Neodymium laser with a plasma-optic shutter,” Sov. Phys. JETP 50(6), 1049–1055 (1979) [Zh. Eksp. Teor. Fiz. 77(6), 2186–2199 (1979)].
4. P. P. Pashinin, V. V. Tumorin, and E. I. Shklovskiı˘, “Spatial structure of the fundamental mode of a loop cavity with holograms on amplifiergrids,” Quantum Electron. 28(8), 707–709 (1998) [Kvant. Elektron. (Moscow) 25(8), 727–729 (1998)].
5. V. F. Lebedev, A. P. Pogoda, A. S. Boreysho, S. N. Smetanin, and A. V. Fedin, “Passively Q-switched high-energy all-solid-state holographic Nd:YAG laser with a multiloop cavity,” Proc. SPIE 9255, 925509 (2015).
6. V. F. Lebedev, “Synthesis of bulk SiO 2 :Mx O y materials in a steady-state laser plume,” Quantum Electron. 27(1), 86–89 (1997) [Kvant. Elektron. (Moscow) 24(1), 89–92 (1997)].
7. V. F. Lebedev and A. A. Shestakov, “Fast LIBS identification of solids during the laser ablation process,” Proc. SPIE 7822, 78220V (2011).
8. V. F. Lebedev and P. S. Makarchuk, “Developing a prototype of a laser system for remote analysis of substances by the method of laser-spark emission spectroscopy,” in Interexpo Geo-Siberia (2015), pp. 130–134.
9. A. V. Gavrilov, M. N. Ershkov, A. V. Fedin, A. S. Boreı˘sho, V. F. Lebedev, and K. A. Bel’kov, “Laser system with a multiloop cavity,” Russian Patent No. 2,572,659 (2011).
10. V. F. Lebedev, A. P. Pogoda, S. N. Smetanin, A. S. Boreı˘sho, and A. V. Fedin, “Lasing regimes of a pulsed Nd:YAG laser with transverse LED pumping and multiloop self-pumped phase-conjugate cavity,” Tech. Phys. 59(12), 1844–1848 (2014)] [Zh. Tekh. Fiz. 84(12), 107–111 (2014)]
11. T. T. Basiev, A. V. Gavrilov, M. N. Ershkov, S. N. Smetanin, A. V. Fedin, K. A. Bel’kov, A. S. Boreı˘sho, and V. F. Lebedev, “Loop laser cavities with self-pumped phase-conjugate mirrors in low-gain active media for phase-locked multichannel laser systems,” Quantum Electron. 41(3), 207–211 (2011) [Kvant. Elektron. (Moscow) 41(3), 207–211 (2011)].
12. A. P. Pogoda, V. F. Lebedev, P. S. Makarchuk, S. N. Smetanin, and A. S. Boreysho, “All solid-state Nd:YAG lasers with self-pumped multiwave-mixing phase-conjugate cavities,” Opt. Mem. Neural Networks 22(4), 267–271 (2013).
13. A. P. Pogoda, V. F. Lebedev, S. N. Smetanin, P. S. Makarchuk, A. S. Boreysho, and A. V. Fedin, “High-energy compact all-solid-state holographic Nd:YAG laser with a multiloop cavity,” in Advanced Solid State Lasers (ASSL) (2013), paper ATu3A44.
14. V. V. Osipov, V. V. Lisenkov, V. A. Shitov, and K. E. Luk’yashin, “Effects of laser radiation on immobile and fast-moving targets,” Quantum Electron. 39(4), 321–327 (2009) [Kvant. Elektron. (Moscow) 39(4), 321–327 (2009)].
15. P. Sobron, C. Lefebvre, R. Leveille, A. Koujelev, T. Haltigin, H. Du, A. Wang, N. Cabrol, K. Zacny, and J. Craft, “Geochemical profile of a layered outcrop in the Atacama analogue using laser-induced breakdown spectroscopy: implications for Curiosity investigations in Gale,” Geophys. Res. Lett. 40, 1965–1970 (2013).