ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

785  nm grating-coupled external-cavity laser for shifted-excitation Raman difference spectroscopy

For Russian citation (Opticheskii Zhurnal):

Fei Wang, Xueqin Lv, Guokun Liu, Xiaobin Cui, Miao Lu 785 nm grating-coupled external-cavity laser for shifted-excitation Raman difference spectroscopy (Полупроводниковый лазер с длиной волны 785 нм с внешним резонатором и решёточным выводом для разностной рамановской спектроскопии со сдвинутым спектром возбуждения) [на англ. яз.] // Оптический журнал. 2017. Т. 84. № 2. С. 28–35.

 

Fei Wang, Xueqin Lv, Guokun Liu, Xiaobin Cui, Miao Lu 785 nm grating-coupled external-cavity laser for shifted-excitation Raman difference spectroscopy (Полупроводниковый лазер с длиной волны 785 нм с внешним резонатором и решёточным выводом для разностной рамановской спектроскопии со сдвинутым спектром возбуждения) [in English] // Opticheskii Zhurnal. 2017. V. 84. № 2. P. 28–35.

For citation (Journal of Optical Technology):

Fei Wang, Xueqin Lv, Guokun Liu, Xiaobin Cui, and Miao Lu, "785  nm grating-coupled external-cavity laser for shifted-excitation Raman difference spectroscopy," Journal of Optical Technology. 84(2), 89-94 (2017). https://doi.org/10.1364/JOT.84.000089

Abstract:

A 785 nm grating-coupled external-cavity (EC) laser was fabricated and applied as a light source for shifted-excitation Raman difference spectroscopy (SERDS) to extract Raman signal from the fluorescence background. A simple Littrow-type EC configuration with the grating lines parallel to the p–n junction was applied to narrow the linewidth of commercially available high-power broad-area laser diode. The characteristics of the EC laser, including wavelength tuning range, output power, and emission spectra, were investigated in detail. A wavelength tuning range of more than 6 nm was realized at an injection current of 900 mA by simply changing the grating rotation angle. The output power after Raman probe coupling exceeded 40 mW and the spectral linewidth was narrowed significantly down to less than 0.1 nm from 0.9 nm (the free-running width). Then, five shifted emission lines were used for the Raman measurement with the sesame oil as the target, whose Raman signal was overwhelmed in the fluorescence background. Due to the constraint relationship between the signal intensity and the spectral resolution, the best reproducibility of the Raman signal without fluorescence background was obtained when the excitation wavelength interval was fixed at around the linewidth of the Raman peak. In conclusion, the grating-coupled EC laser with flexible wavelength tunability, high output power, and narrow spectral linewidth was demonstrated to be an ideal light source for SERDS application.

Keywords:

grating-coupled external-cavity laser, Raman spectroscopy, fluorescence background, shifted excitation Raman difference spectroscopy (SERDS).

Acknowledgements:

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61306087 and 61574119), the Natural Science Foundation of Fujian Province of China (Grant Nos. 2013J05096 and 2015J05130), and Fundamental Research Funds for the Central Universities (No. 20720150084).

OCIS codes: 140.3550, 140.3600, 140.5960, 170.5660, 170.6280

References:

1. Feng S.L., Gao F., Chen Z.W., Grant E., Kitts D.D., Wang S., Lu X.N. Determination of α-tocopherol in vegetable oils using a molecularly imprinted polymers-surface-enhanced Raman spectroscopic biosensor // J. Agric. Food Chem. 2013. V. 61. Is. 44. P. 10467–10475.
2. Zhao J., Liu Y., Fales A.M., Register J., Yuan H., Dinh T.V. Direct analysis of traditional Chinese medicines using surface-enhanced Raman scattering (SERS) // Drug Test. Anal. 2014. V. 6. Is. 10. P. 1063–1068.
3. Talari A.C.S., Movasaghi Z., Rehman S., Rehman I.U. Raman spectroscopy of biological tissues // Appl. Spectrosc. Rev. 2015. V. 50. Is. 1. P. 46–111.
4. Shreve A.P., Cherepy N.J., Mathies R.A. Effective rejection of fluorescence interference in Raman spectroscopy using a shifted excitation difference technique // Appl. Spectrosc. 1992. V. 46. Is. 4. P. 707–711.
5. Oshima Y., Komachi Y., Furihata C., Tashiro H., Sato H. Fluorescence-suppressed Raman technique for quantitative analysis of protein solution using a micro-Raman probe, the shifted excitation method, and partial least squares regression analysis // Appl. Spectrosc. 2006. V. 60. Is. 9. P. 964–970.
6. Maiwald M., Erbert G., Klehr A., Kronfeldt H.-D., Schmidt H., Sumpf B., Trankle G. Rapid shifted excitation Raman difference spectroscopy with a distributed feedback diode laser emitting at 785 nm // Appl. Phys. B. 2006. V. 85. Is. 4. P. 509–512.
7. Maiwald M., Schmidt H., Sumpf B., Guther R., Erbert G., Kronfeldt H.D., Trankle G. Microsystem light source at 488 nm for shifted excitation resonance Raman difference spectroscopy // Appl. Spectrosc. 2009. V. 63. Is. 11. P. 1283–1287.

8. Sowoidnich K., Kronfeldt H.D. Shifted excitation Raman difference spectroscopy at multiple wavelengths for in-situ meat species differentiation // Appl. Phys. B . 2012. V. 108. Is. 4. P. 975–982.
9. Noack K., Eskofier B., Kiefer J., Dilk C., Bilow G., Schirmer M., Buchholz R., Leipertz A. Combined shiftedexcitation Raman difference spectroscopy and support vector regression for monitoring the algal production of complex polysaccharides // Analyst. 2013. V. 138. P. 5639–5646.
10. Cooper J.B., Abdelkader M., Wise K.L. Sequentially shifted excitation Raman spectroscopy: novel algorithm and instrumentation for fluorescence-free Raman spectroscopy in spectral space // Appl. Spectrosc. 2013. V. 67. Is. 8. P. 973–984.
11. Maiwald M., Fricke J., Ginolas A., Pohl J., Sumpf B., Erbert G., Trankle G. Dual-wavelength monolithic Y-branch distributed Bragg reflection diode laser at 671 nm suitable for shifted excitation Raman difference spectroscopy // Laser Photonics Rev. 2013. V. 7. Is. 4. P. L30–L33.
12. Zhao J., Carrabba M.M., Allen F.S. Automated fluorescence rejection using shifted excitation Raman difference spectroscopy // Appl. Spectrosc. 2002. V. 56. Is. 7. P. 834–845.
13. Osticioli I., Zoppi A., Castellucci E.M. Shift-excitation Raman difference spectroscopy-difference deconvolution method for the luminescence background rejection from Raman spectra of solid samples // Appl. Spectrosc. 2007. V. 61. Is. 8. P. 839–844.
14. Zou W.L., Cai Z.J., Wu J.H. Fluorescence rejection by shifted excitation Raman difference spectroscopy // Proc. of SPIE. 2010. V. 7855. P. 78551M.
15. Martins M.A.D.S., Ribeiro D.G., Santos E.A.P.D., Martin A.A., Fontes A., Martinho H.D.S. Shifted-excitation Raman difference spectroscopy for in vitro and in vivo biological samples analysis // Biomed. Opt. Express. 2010. V. 1. Is. 2. P. 617–626.
16. Adami R., Kiefer J. Light-emitting diode based shifted-excitation Raman difference spectroscopy (LED-SERDS) // Analyst. 2013. V. 138. P. 6258–6261.
17. Stry S., Hildebrandt L., Sacher J., Buggle C., Kemmann M., Klitzing W.V. Compact tunable diode laser with diffraction limited 1 Watt for atom cooling and trapping // Proc. of SPIE. 2004. V. 5336. P. 17–25.
18. Yang Z.N., Li Y.D., Wang H.Y., Lu Q.S., Xu X.J. Frequency-narrowed external-cavity broad-area-diode for rubidium laser pumping // Chin. Opt. Lett. 2011. V. 9. Is. 6. P. 061401.