ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 537.87

Physical optics analysis of a three-dimensional radiating structure

For Russian citation (Opticheskii Zhurnal):

Якимов А.Н., Неробеев А.В. Анализ трёхмерной излучающей структуры методом физической оптики // Оптический журнал. 2017. Т. 84. № 2. С. 3–9.

 

Yakimov A.N., Nerobeev A.V. Physical optics analysis of a three-dimensional radiating structure [in Russian] // Opticheskii Zhurnal. 2017. V. 84. № 2. P. 3–9.

For citation (Journal of Optical Technology):

A. N. Yakimov and A. V. Nerobeev, "Physical optics analysis of a three-dimensional radiating structure," Journal of Optical Technology. 84(2), 69-74 (2017). https://doi.org/10.1364/JOT.84.000069

Abstract:

We discuss radiating structures in an infrared mirror optical system exposed to external thermal and mechanical effects and affected by significant deformations that affect the directional patterns of such sources. Deformations distort the radiant surfaces into a complex 3D shape that turns out to be difficult to describe in closed form. We have developed a discrete mathematical model for the radiant structure; this model can be used to study the structural impact of external effects on the infrared source and on the radiation characteristics of the source. Matrix analysis and analytical geometry enabled us to determine the spatial orientation of elementary areas of the deformed radiating surface and to then use physical optics to determine the contribution of each elementary area to the radiation emitted, taking into account the vector nature of the electromagnetic field.

Keywords:

radiating structure, deformation, discretization, mathematical model, physical optics

OCIS codes: 260.0260, 50.1960

References:

1. P. Ya. Ufimtsev, Method of Edge Waves in the Physical Theory of Diffraction (Foreign Technology Division, Air Force Systems Command, 1971; Sovetskoe Radio, Moscow, 1962).
2. A. A. Semenov, Electromagnetic Wave Theory (Izd. MGU, Moscow, 1968).
3. A. N. Yakimov, “Numerical modeling of microwave antenna emission taking edge effects into account,” Metrologiya (11), 32 (2002).
4. A. L. Borzov, A. L. Sokolov, and V. L. Suchkov, “Techniques for numerical modeling of the radar characteristics of complex objects against the background created by natural and anthropogenic features,” Zh. Radioélektron.: Élektron. Zh. Ross. Akad. Nauk (3), 2000, http://jre.cplire.ru/koi/mar00/3/text.html.
5. A. N. Yakimov, E. L. Lapshin, and N. K. Yurkov, “Discrete representation—a basis for modeling of complex antenna configurations,” Izv. Samar. Nauchn. Tsentra Ross. Akad. Nauk 16(4–2), 454–458 (2014).
6. A. N. Yakimov, “Discrete representation of radiation from a parabolic antenna in MATLAB,” in Proceedings of the International Seminar on Reliability and Quality (Izd. Penz. GU, Penza, 2015), Vol. 1, pp. 54–56.
7. G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers (McGraw Hill, New York, 1968; Nauka, Moscow, 1974).
8. A. L. Drabkin, V. L. Zuzenko, and A. L. Kislov, Antenna Feeds (Sovetskoe Radio, Moscow, 1974).
9. E. Yu. Maksimov, N. K. Yurkov, and A. N. Yakimov, “A finite-element model of the thermal influences on a microstrip antenna,” Meas. Tech. 54(2), 207–212 (2011) [Izmer. Tekh. (2), 65–68 (2011)].