УДК: 621.397.3
Spectral method for estimating the point-spread function in the task of eliminating image distortions
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Сизиков В.С. Спектральный способ оценки функции рассеяния точки в задаче устранения искажений изображений // Оптический журнал. 2017. Т. 84. № 2. С. 36–44.
Sizikov V.S. Spectral method for estimating the point-spread function in the task of eliminating image distortions [in Russian] // Opticheskii Zhurnal. 2017. V. 84. № 2. P. 36–44.
V. S. Sizikov, "Spectral method for estimating the point-spread function in the task of eliminating image distortions," Journal of Optical Technology. 84(2), 95-101 (2017). https://doi.org/10.1364/JOT.84.000095
This paper gives a further development of a method for estimating the parameters of the point-spread function (PSF), based on the Fourier spectrum of a distorted image. This method makes it possible to estimate the PSF parameters: the angle θ and magnitude Δ of the image smearing, as well as the size ρ or σ of the image-defocusing spot. This is important for enhancing the image-reconstruction accuracy. The spectrum of a smeared image is compressed in the smearing direction, and this makes it possible to estimate θ and Δ. The spectrum of a defocused image is also compressed more strongly, the larger the defocusing spot. New, more accurate estimates of the defocusing parameters are derived, ρ using the Bessel function and σ using the three-sigma rule, and the smearing parameters θ and Δ are estimated using the Nyquist frequency. Numerical examples of the use of this technique are given. The technique thus developed can be used to enhance the accuracy with which smeared and defocused images are restored by mathematically processing them.
image distortions (smearing, defocusing), point-spread function, distortion parameters, Fourier spectrum, Bessel function, MatLab
Acknowledgements:The research was supported by the Russian Foundation for Basic Research (RFBR) (13-08-00442).
OCIS codes: 100.0100
References:1. A. N. Tikhonov, A. V. Goncharskiı˘, and V. V. Stepanov, “Reverse photographic-image-processing problems,” in Ill-posed Problems of Natural Science, A. N. Tikhonov and A. V. Goncharskiı˘, eds. (Izd. MGU, Moscow, 1987), pp. 185–195.
2. A. V. Gorshkov, “Improving the resolution of images when processing the data of a physical experiment and finding the unknown spread function from the programs of the reimage package,” Prib. Tekh. Eksp. (2), 68–78 (1995).
3. Yu. E. Voskoboı˘nikov and I. N. Mukhina, “Local regularizing algorithm for restoring contrasty signals and images,” Avtometriya (3), 45–53 (2000).
4. I. S. Gruzman, V. S. Kirichuk, V. P. Kosykh, G. I. Peretyagin, and A. A. Spektor, Digital Image Processing in Information Systems (Izd. NGTU, Novosibirsk, 2002).
5. R. C. Gonzalez and R. E. Woods, Digital Image Processing (Prentice Hall, Upper Saddle River, New Jersey, 2002; Tekhnosfera, Moscow, 2006).
6. R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital Image Processing Using MATLAB (Prentice Hall, Upper Saddle River, New Jersey, 2004; Tekhnosfera, Moscow, 2006).
7. M. Donatelli, C. Estatico, A. Martinelli, and S. Serra-Capizzano, “Improved image deblurring with antireflective boundary conditions and re-blurring,” Inverse Probl. 22, 2035–2053 (2006).
8. P. C. Hansen, J. G. Nagy, and D. P. O’Leary, Deblurring Images: Matrices, Spectra, and Filtering (SIAM, Philadelphia, 2006).
9. Yu. E. Voskobonikov, “Combined nonlinear algorithm for restoring contrasty images with an inaccurately specified spread function,” Avtometriya 43(6), 3–16 (2007).
10. V. S. Sizikov, Applied Inverse Problems and MatLab (Lan’, St. Petersburg, 2011).
11. V. S. Sizikov and R. A. Ékzemplyarov, “Operating sequence when noise is being filtered on distorted images,” J. Opt. Technol. 80(1), 28–34 (2013) [Opt. Zh. 80(1), 39–48 (2013)].
12. D. N. Sidorov, Methods of Analyzing Integral Dynamic Models: Theory and Applications (Izd. IGU, Irkutsk, 2013).
13. D. Sidorov, Integral Dynamical Models: Singularities, Signals and Control (World Scientific Publishers, Singapore–London, 2014).
14. V. D’yakonov and I. Abramenkova, MATLAB: Signal and Image Processing (Piter, St. Petersburg, 2002).
15. V. S. Sizikov, “Estimating the point-spread function from the spectrum of a distorted tomographic image,” J. Opt. Technol. 82(8), 655–658 (2015) [Opt. Zh. 82(10), 13–17 (2015)].
16. R. H. Bates and M. J. McDonnell, Image Restoration and Reconstruction (Oxford University, 1989; Mir, Moscow, 1989).
17. M. Donatelli, T. Huckle, M. Mazza, and D. Sesana, “Image deblurring by sparsity constraint on the Fourier coefficients,” Numer. Algorithms 72(2), 341–361 (2016).
18. G. I. Vasilenko and A. M. Taratorin, Image Reconstruction (Radio i Svyaz’, Moscow, 1986).
19. L. Yan, H. Lin, S. Zhong, and H. Fang, “Semi-blind spectral deconvolution with adaptive Tikhonov regularization,” Appl. Spectrosc. 66(11), 1334–1346 (2012).
20. R. N. Bracewell, The Hartley Transforms (Oxford University, New York, 1986; Mir, Moscow, 1990).
21. G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers (McGraw-Hill, New York, 1961; Nauka, Moscow, 1968).
22. I. N. Bronshteı˘n and K. A. Semendyaev, Mathematical Handbook for Engineers and Students of Technical Colleges (Nauka, Moscow, 1986).
23. M. V. Aref’eva and A. F. Sysoev, “Fast regularizing algorithms for digital image reconstruction,” Vychislit. Metody Programm. 39, 40–55 (1983).
24. V. A. Soı˘fer, ed., Methods of Computer Image Processing (Fizmatlit, Moscow, 2001).
25. Yu. P. Petrov and V. S. Sizikov, Well-Posed, Ill-Posed, and Intermediate Problems with Applications (VSP, Leiden–Boston, 2005).
26. K. T. Protasov, V. V. Belov, and N. V. Molchunov, “Image reconstruction with preliminary estimation of the point-spread function,” Opt. Atmos. Okeana 13(2), 139–145 (2000).
27. T. V. Antonova, “Methods of identifying the parameter in the kernel of a convolution equation of the first type on the class of functions with discontinuities,” Sibirs. Zh. Vychis. Matem. 18(2), 107–120 (2015).