Design of an optical system for a solar simulator with high collimation degree and high irradiance
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Liu Shi, Zhang Guoyu, Sun Gaofei, Wang Lingyun, Gao Yujun Design of an optical system for a solar simulator with high collimation degree and high irradiance (Конструкция оптической системы солнечного имитатора с высокой степенью коллимации и энергетической освещённости) [на англ. яз.] // Оптический журнал. 2017. Т. 84. № 2. С. 64–70.
Liu Shi, Zhang Guoyu, Sun Gaofei, Wang Lingyun, Gao Yujun Design of an optical system for a solar simulator with high collimation degree and high irradiance (Конструкция оптической системы солнечного имитатора с высокой степенью коллимации и энергетической освещённости) [in English] // Opticheskii Zhurnal. 2017. V. 84. № 2. P. 64–70.
Shi Liu, Guoyu Zhang, Gaofei Sun, Lingyun Wang, and Yujun Gao, "Design of an optical system for a solar simulator with high collimation degree and high irradiance," Journal of Optical Technology. 84(2), 117-121 (2017). https://doi.org/10.1364/JOT.84.000117
To solve the bottleneck caused by the fact that solar simulators are unable to simulate a solar collimation angle of 32¢ and an irradiance of one solar constant at the same time, we designed a new type of optical system for solar simulators. Five major design aspects of the optical system are addressed: the hybrid condenser, collimation lens, field stop, optimization of the optical integrator and the effects on the non-uniformity when the projector lens is defocused. The results show that the solar simulator described in this paper, can realize a solar angle of 32¢ and an irradiance of one solar constant. Meanwhile, the non-uniformity is less than ±1.34% when the irradiation area has a diameter that is no more than 100 mm and in the 100–300 mm diameter range is less than ±3.8%.
solar simulator, optical system design, high collimation degree, high irradiance
Acknowledgements:The authors would like to thank Prof. Zhang from Changchun University of Science and Technology for his insight and support. This work is supported by The National Natural Science Foundation of China (61603061) and Project development plan of science and technology in Jilin province (No. 20150520093JH).
OCIS codes: 230.0230, 220.4830, 220.3620
References:1. Buchele D.R. Lens projection system for a solar simulator providing irradiance of 100 solar constants // Applied Optics. 1973. № 12. P. 355–358.
2. Olson R.A., Parker J.H. Carbon arc solar simulator // Applied Optics. 1991. V. 30. P. 1290–1293.
3. Bartera R.E., Riise H.N., Miller C.G. Solar simulators at the Jet Propulsion Laboratory // Applied Optics. 1970. V. 9. P. 1068–1074 .
4. Liebmann R. Solar simulator for a 3-m space environment chamber // Applied Optics. 1968. V. 7. P. 315–323.
5. Parretta A., Antonini A., Armani M., Nenna G., Flaminio G., Pellegrino M. Double-cavity radiometer for highflux density solar radiation measurements // Applied Optics. 2007. V. 46. P. 2166–2179.
6. Abdel Rahman H., Kirah K., Ghali H., Anis W. Simulation of an asymmetric contacted carbon nanotube for solar-energy harvesting // Applied Optics. 2014. V. 53. P. 1237–1241.
7. Domínguez C., Antón I., Sala G. Solar simulator for concentrator photovoltaic systems // Optics express. 2008. V. 16. P. 14894–14901.
8. Singh N.D., Moocarme M., Edelstein B., Punnoose N., Vuong L.T. Anomalously-large photo-induced magnetic response of metallic nanocolloids in aqueous solution using a solar simulator // Optics express. 2012. V. 20. P. 19214–19225.
9. Tremblay E.J., Loterie D., Moser C. Thermal phase change actuator for self-tracking solar concentration // Optics express. 2012. V. 20. P. A964–A976.
10. Park M., Oh K., Kim J., Shin H.W., Oh B.D. A tapered dielectric waveguide solar concentrator for a compound semiconductor photovoltaic cell // Optics express. 2010. V. 18. P. 1777–1787.
11. Waśniewski T. Processes of excitation and deactivation of excitation energy in organic wavelength transformers cooperating with solar photovoltaic cells // Applied Optics. 1992. V. 31. P. 2163–2167.
12. De Young R.J. Beam profile measurement of a solar-pumped iodine laser // Applied Optics. 1986. V. 25. P. 3850–3854.
13. Wilson A.D. Spectroscopic studies of small linear flashlamps for use as solar radiation simulators // Applied Optics. 1984. V. 23. P. 1305–1307.
14. Powell I. New concept for a system suitable for solar simulation // Applied Optics. 1980. V. 19. P. 329–334.