ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 535.8, 51-7, 519.873

Optimizing the process for fabricating microstructured optical fiber

For Russian citation (Opticheskii Zhurnal):

Бжеумихов К.А., Маргушев З.Ч., Савойский Ю.В. Оптимизация технологического процесса изготовления микроструктурированного оптического волокна // Оптический журнал. 2017. Т. 84. № 2. С. 71–80.

 

Bzheumikhov K.A., Margushev Z.Ch., Savoyskiy Yu.V. Optimizing the process for fabricating microstructured optical fiber [in Russian] // Opticheskii Zhurnal. 2017. V. 84. № 2. P. 71–80.  

For citation (Journal of Optical Technology):

K. A. Bzheumikhov, Z. Ch. Margushev, and Yu. V. Savoĭskiĭ, "Optimizing the process for fabricating microstructured optical fiber," Journal of Optical Technology. 84(2), 122-129 (2017). https://doi.org/10.1364/JOT.84.000122

Abstract:

This paper is devoted to the optimization of the “stack-and-draw” process for fabricating microstructured solid-core optical fiber, based on the Box–Wilson (steep-ascent) mathematical method. As a result, a road map of a multistage process has been developed for producing fiber from silicate AR-GLAS. It is shown that such an approach can be used to optimize the production of polycapillary structures for optical applications.

Keywords:

polycapillary structure, microstructured optical fiber, photonic-crystal fiber, stack-and-draw method, Box–Wilson method

OCIS codes: 060.2280, 060.4005

References:

1. A. Bjeoumikhov, N. Langhoff, R. Wedell, V. Beloglazov, N. Lebedev, and N. Skibina, “New generation of polycapillary lenses: manufacture and applications,” X-Ray Spectrom. 32, 172–178 (2003).
2. P. St.J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24, 4729–4749 (2006).
3. A. M. Zheltikov, Microstructured Lightguides in Optical Technologies (FIZMATLIT, Moscow, 2009).
4. S. K. Kulov, Microchannel Plates (Severo-Kavkazskiı˘ Tekhnologicheskiı˘ Universitet, Vladikavkaz, 2001).
5. http://www.mpl.mpg.de/en/russell/research/tdsu‑3‑fibre‑drawing.html.
6. A. F. Fitt, K. Furusawa, T. M. Monro, C. P. Please, and D. J. Richardson, “The mathematical modeling of capillary drawing for holey fibre manufacture,” J. Eng. Math. 43(2–4), 201–227 (2002).
7. L. J. Summings and P. D. Howell, “On the evolution of non-axisymmetric viscous fibres with surface tension, inertia and gravity,” J. Fluid Mech. 389, 361–389 (1999).
8. R. M. Wynne, “A fabrication process for microstructured optical fibers,” J. Lightwave Technol. 24, 4304–4313 (2006).
9. C. J. Voyce, A. D. Fitt, and T. Monro, “Mathematical modeling as an accurate predictive tool in capillary and microstructured fiber manufacture: the effects of preform rotation,” J. Lightwave Technol. 26, 791–798 (2008).
10. G. T. Jasion, J. S. Shrimpton, Y. Chen, T. Bradley, D. J. Richardson, and F. Poletti, “MicroStructure Element Method (MSEM): viscous flow model for the virtual draw of microstructured optical fibers,” Opt. Express 23(1), 312–329 (2015).
11. R. Kostecki, H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Predicting the drawing conditions for Microstructured Optical Fiber fabrication,” Opt. Mater. Express 4(1), 29–40 (2014).
12. K. A. Bzheumikhov, Z. Ch. Margushev, and Yu. V. Savoı˘skiı˘, “Polycapillary micro- and nanostructures made from glass: analysis of approaches to the mathematical modeling of the fabrication process,” Izv. KBNTs RAN 65(3), 9–17 (2015).
13. Yu. P. Adler, E. V. Markova, and Yu. V. Granovskiı˘, Planning an Experiment While Searching for the Optimal Conditions (Nauka, Moscow, 1976).
14. L. B. Alekseeva and L. B. Artyushkov, “Choosing a regression model for the process of drawing lightguides,” Fund. Priklad. Issled. Prob. Rez. (3), 112–115 (2013).
15. S. N. Patra, R. J. T. Lin, and D. Bhattacharyya, “Regression analysis of manufacturing electrospun nonwoven nanotextiles,” J. Mater. Sci. 45(14), 3938–3946 (2010).
16. M. J. Yazdanpanah, M. R. Khanmohammadi, R. M. Aghdam, K. Shabani, and M. Rajabi, “Optimization of electrospinning process of poly(vinyl alcohol) via response surface methodology (RSM) based on the central composite design,” Curr. Chem. Lett. 3, 175–182 (2014).
17. A. N. Aparna, S. K. Sudheer, and M. Jayaraju, “Analysis of optical characteristics for photonic crystal fiber at small core diameters,” Int. J. Eng. Adv. Technol. 3(4), 377–380 (2014).
18. A. I. Filipenko and A. V. Ponomareva, “Modern status of the problem of monitoring the structural–geometrical parameters of microstructured optical fibers,” Radiotekhnika (154), 102–107 (2008).
19. S. S. Mishra and V. K. Singh, “Comparative study of fundamental properties of honeycomb photonic crystal fiber at 1.55 μm wave-length,” J. Microw. Optoelectron. Electromagn. Appl. 10(2), 343–354 (2011).
20. P. M. Agruzov, K. V. Dukel’skiı˘, A. V. Komarov, E. V. Ter-Nersesyants, A. V. Khokhlov, and V. S. Shevandin, “Developing microstructured lightguides with a large core, and an investigation of their optical properties,” J. Opt. Technol. 77(1), 59–62 (2010) [Opt. Zh. 77(1), 77–81 (2010)].