УДК: 621.397.6
How atmospheric haze affects the efficiency of wide-angle airborne television cameras when ground objects are being observed
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Овсянников В.А., Овсянников Я.В., Филиппов В.Л. Влияние атмосферной дымки на эффективность широкопольных телекамер воздушного базирования при наблюдении наземных объектов // Оптический журнал. 2017. Т. 84. № 3. С. 28–34.
Ovsyannikov V.A., Ovsyannikov Ya.V., Filippov V.L. How atmospheric haze affects the efficiency of wide-angle airborne television cameras when ground objects are being observed [in Russian] // Opticheskii Zhurnal. 2017. V. 84. № 3. P. 28–34.
V. A. Ovsyannikov, Ya. V. Ovsyannikov, and V. L. Filippov, "How atmospheric haze affects the efficiency of wide-angle airborne television cameras when ground objects are being observed," Journal of Optical Technology. 84(3), 179-184 (2017). https://doi.org/10.1364/JOT.84.000179
An engineering technique is proposed for predicting how atmospheric haze reduces the image contrast of ground objects observed under daytime conditions using a wide-angle forward-viewing television camera when the objects lie close to the upper edge of the camera’s field of view when this contrast is optimized for objects located close to the lower limit of its field of view. Suitable estimates are calculated for typical radiance factors of the objects and the ambient background and a typical field of view of the camera, thereby optimizing the choice of the angle of deviation of the camera axis from the horizontal.
television camera, image contrast, atmospheric haze
OCIS codes: 010.7295
References:1. V. A. Kovalev, Visibility in the Atmosphere and Its Determination (Gidrometeoizdat, Leningrad, 1988).
2. V. P. Ivanov, V. I. Kurt, V. A. Ovsyannikov, and V. L. Filippov, Modeling and Evaluating Modern Thermal Viewers (Otechestvo, Kazan’, 2006).
3. B. Z. Sokolov, “Calculating the spectral radiance of the earth’s daytime atmosphere,” Izmer. Tekh. (9), 40–43 (2001).
4. K. S. Shifrin and N. P. Pyatovskaya, Tables of the Oblique Range of Visibility and Brightness of the Daytime Sky (Gidrometeoizdat, Leningrad, 1959).
5. V. A. Baloev, G. I. Il’in, V. A. Ovsyannikov, and V. L. Filippov, The Effectiveness of Noise Suppression and Noise Immunity of Specific Optoelectronic Systems (Izd. Kazan. Gos. Tekh. Univ., Kazan’, 2015).
6. G. N. Gryazin, Optoelectronic Systems for Viewing Space. Television Systems (Mashinostroenie, Leningrad, 1988).
7. A. Hodgkin, T. Maurer, C. Halford, and R. Vollmerhausen, “Impact of path radiance on MWIR and LWIR imaging,” Proc. SPIE 6543, 65430O (2007).
8. V. V. Volkov, A. V. Luizov, B. V. Ovchinnikov, and N. P. Travnikova, Ergonomics of Human Visual Activity (Mashinostroenie, Leningrad, 1989).
9. V. A. Ovsyannikov and V. L. Filippov, “Concerning the promise of using visible optoelectronic systems for the short-wavelength spectral region,” Oboron. Tekh. (7), 38–48 (2014).
10. S. Moyer, J. Hixson, T. Edwards, and K. Krapels, “Probability of identification of small hand-held objects for electro-optic FLIR,” Opt. Eng. 45(6), 063201 (2006).
11. O. J. Connor, R. Driggers, R. Vollmerhausen, N. Devitt, and J. Olson, “Fifty-percent probability of identification (N50) comparison for targets in the visible and infrared spectral bands,” Opt. Eng. 42(10), 3047–3052 (2003).
12. D. A. Mityushin, “The task of estimating the efficiency of on-board optoelectronic apparatus of complexes with unmanned aircraft,” Spetsial. Tekh. (3), 13–16 (2014).