ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 004.932.2, 517.968

Wavelet/fractal correlation algorithm for type recognition of a dynamic object detected by an optoelectronic device

For Russian citation (Opticheskii Zhurnal):

Катулев А.Н., Храмичев А.А. Вейвлет-фрактально-корреляционный алгоритм распознавания типа динамического объекта, обнаруживаемого оптико-электронным прибором // Оптический журнал. 2017. Т. 84. № 4. С. 25–34.

 

Katulev A.N., Khramichev A.A. Wavelet/fractal correlation algorithm for type recognition of a dynamic object detected by an optoelectronic device [in Russian] // Opticheskii Zhurnal. 2017. V. 84. № 4. P. 25–34.

For citation (Journal of Optical Technology):

A. N. Katulev and A. A. Khramichev, "Wavelet/fractal correlation algorithm for type recognition of a dynamic object detected by an optoelectronic device," Journal of Optical Technology. 84(4), 237-245 (2017). https://doi.org/10.1364/JOT.84.000237

Abstract:

We propose an algorithm for automated type recognition of dynamic objects using observations performed by an optoelectronic device against a natural background. This algorithm is invariant with respect to the trajectories of the objects, is based on the ratio of the likelihood functions for simple alternative hypotheses, and implements an unbiased maximum-power criterion for object recognition with indeterminate a priori knowledge of the target environment. The likelihood functions are calculated over certain samples of wavelet-spectrum energies, fractal dimensions, and maximum auto-correlation-matrix eigenvalues for instrumentally measured elevation and azimuth, and the calculated maximum range of the object during a finite time interval. Modeling was used to establish that the algorithm has high computational efficiency for real-time use on modern PCs.

Keywords:

optoelectronic device, dynamic object type, recognition, recognition statistics, criterion, algorithm

OCIS codes: 110.2960, 100.2000

References:

1. L. Z. Kriksunov, Night-Vision Equipment (Izd. Tekhnika, Kyiv, 1975).
2. O. B. Guzenko, A. N. Katulev, A. A. Khramichev, and S. V. Yagolnikov, Automatic Detection and Tracking of Dynamic Objects in Images Produced by Opto-Electronic Devices in Situations with Prior Uncertainty: Methods and Algorithms (Radiotekhnika, Moscow, 2015).
3. A. N. Katulev, A. A. Kolonskov, A. A. Khramichev, and S. V. Yagolnikov, “Adaptive method and algorithm for detecting low-contrast objects with an optoelectronic device,” J. Opt. Technol. 81(2), 75–82 (2014) [Opt. Zh. 81(2), 29–39 (2014)].
4. J. Feder, Fractals (Plenum Press, New York, 1989; Mir, Moscow, 1991).
5. A. A. Potapov, Yu. V. Gulyaev, S. A. Nikitov, A. A. Pakhomov, and V. A. German, Modern Image Processing Techniques (Fizmatlit, Moscow, 2008).
6. A. V. Lapko and V. A. Lapko, “Construction of confidence boundaries for the decision function in a two-alternative problem of pattern recognition,” Optoelectron. Instrument. Data Proc. 51(4), 372–377 (2015) [Avtometriya 51(4), 62–67 (2015)].
7. M. V. Gashnikov, N. I. Glumov, N. Yu. Ilyasova, V. V. Myasnikov, S. B. Popov, V. V. Sergeev, V. A. Soı˘fer, A. G. Khramov, A. V. Chernov, V. M. Chernov, M. A. Chicheva, and V. A. Fursov, Computer Image Processing Techniques (Fizmatlit, Moscow, 2003).
8. R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital Image Processing Using MATLAB (Prentice Hall, Englewood Cliffs, NJ, 2004; Tekhnosfera, Moscow, 2006).
9. D. R. Cox and D. V. Hinkley, Theoretical Statistics (Chapman and Hall, London, 1974; Mir, Moscow, 1978).
10. D. K. Faddeev and V. N. Faddeeva, Computational Methods of Linear Algebra (W. H. Freeman, London, 1993; FML, Moscow, 1960).
11. A. N. Yakovlev, Fundamentals of Wavelet Transforms on Signals (SAINS-PRESS, Moscow, 2003).
12. A. N. Kolmogorov and S. V. Fomin, Introductory Real Analysis (Dover Publications, New York, 1975; Nauka, Moscow, 1968).
13. H. L. Van Trees, Detection, Estimation and Modulation Theory, Part 1 (Wiley, New York, 1968; Sovetskoe Radio, 1972), p. 100.
14. D. Middleton, An Introduction to Statistical Communication Theory (McGraw-Hill, New York, 1960; Sovetskoe Radio, Moscow, 1962).
15. A. K. Mitropolskiı˘, Statistical Calculation Techniques (Nauka, Moscow, 1971).
16. M. G. Kendall and A. Stuart, The Advanced Theory of Statistics, Vol. 3, Design and Analysis, and Time-Series (Charles Griffin, London, 1968; Nauka, Moscow, 1976).
17. A. N. Katulev and A. A. Khramichev, “Automatic wavelet-based segmentation of a background-and-target frame from an optoelectronic device for detection of dynamic objects in 2D images,” J. Opt. Technol. 83(2), 98–105 (2016) [Opt. Zh. 83(2), 30–39 (2016)].
18. E. J. Vilkas, Optimality of Games and Solutions (Nauka, Moscow, 1970).
19. Yu. G. Sosulin, Theoretical Fundamentals of Radar and Radio Navigation (Radio i Svyaz, Moscow, 1992).
20. S. Z. Kuzmin, Fundamentals of the Theory of Digital Processing of Radar Data (Sovetskoe Radio, Moscow, 1974).
21. V. V. Sychev, Calculation of Correlation Dimension, Correlation Entropy, and Hurst Parameter from Time Series of Data (Russian Academy of Sciences Institute for Mathematical Biology, Pushchino, 2002).
22. A. E. Basharinov and B. S. Fleı˘shman, Methods for Statistical Time-Series Analysis, with Radio Engineering Applications (Sovetskoe Radio, Moscow, 1962).
23. V. A. Malyshev, I. M. Khmarov, O. V. Malyshev, V. Yu. Kanivets, A. S. Mirzoyan, N. G. Kondrashov, and A. S. Vishnyakov, Recognition of Aircraft and Objects on the Ground Using 2D and 3D Opto-Electronic Systems (FGUP NTTs Informatika, Moscow, 2013).