Transmission three-port beam splitter and positioning tolerance of the gratings
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Bo Wang, Hao Pei, Wenhao Shu, Hongtao Li, Li Chen, Liang Lei, Jinyun Zhou Transmission three-port beam splitter and positioning tolerance of the gratings (Трёхпортовый пропускающий светоделитель и чувствительность коэффициентов светоделения к позиционированию решёток) [на англ. яз.] // Оптический журнал. 2017. Т. 84. № 4. С. 46–49.
Bo Wang, Hao Pei, Wenhao Shu, Hongtao Li, Li Chen, Liang Lei, Jinyun Zhou Transmission three-port beam splitter and positioning tolerance of the gratings (Трёхпортовый пропускающий светоделитель и чувствительность коэффициентов светоделения к позиционированию решёток) [in English] // Opticheskii Zhurnal. 2017. V. 84. № 4. P. 46–49.
Bo Wang, Hao Pei, Wenhao Shu, Hongtao Li, Li Chen, Liang Lei, and Jinyun Zhou, "Transmission three-port beam splitter and positioning tolerance of the gratings," Journal of Optical Technology. 84(4), 256-259 (2017). https://doi.org/10.1364/JOT.84.000256
We describe a sandwiched two-layer grating as a three-port beam splitter, which can achieve high-efficiency diffraction with polarization-independence in the 0-th and the ±1-st orders. Diffractive efficiencies of 32.4/32.9% can be diffracted into the 1-st and the 0-th orders for TE polarization. And 33.1/32.8% can be diffracted for TM polarization. Besides, good splitting ratio uniformity can be exhibited within the broad duty cycle for both TE and TM polarizations. Moreover, the positioning tolerance of the gratings that constitute the sandwich is analyzed.
a sandwiched two-layer grating, a three-port beam splitter, diffraction, polarization-independence, TE and TM polarizations
Acknowledgements:This work is supported by the National Natural Science Foundation of China (11304044), the Excellent Young Teachers Program of Higher Education of Guangdong Province, and the Pearl River Nova Program of Guangzhou (201506010008).
OCIS codes: 050.1380; 230.1360; 050.1950
References:1. Lysenko G.A., Kachurin Yu.Yu., Pogodaev V.V., Shamilina E.V. Dependence of the error of measurement of the phase delay by an interference ellipsometer on the polarization properties of the beam splitter // J. Opt. Technol. 2002. V. 69. P. 505.
2. Pan C., Rahman B.M.A. Compact polarization-independent MMI-based 1×2 power splitter using metal-cap silicon-on-insulator waveguide // IEEE Photon. J. 2016. V. 8. P. 7101014.
3. Jiao W., Wang G., Ying Z., Kang Z., Sun T., Zou N., Ho H.-P., Zhang X. Optofluidic switching of nanoparticles based on a WDM tree splitter // IEEE Photon. J. 2016. V. 8. P. 7803010.
4. Wu D., Xie H., Dai X., Wang R. A novel method to fabricate micro-gratings applied for deformation measurement around a crack in a thin film // Meas. Sci. Technol. 2014. V. 25. P. 025012.
5. Ye T., Fu Y., Qiao L., Chu T. Low-crosstalk Si arrayed waveguide grating with parabolic tapers // Opt. Express. 2014. V. 22. P. 31899.
6. Zheng G., Chen Y., Xu L., Su W., Liu Y. High reflectivity broadband infrared mirrors with all dielectric subwavelength gratings // Opt. Commun. 2014. V. 318. P. 57.
7. Wang B., Chen L., Lei L., Zhou J. Metal-based phase grating for high-efficiency polarizing beam splitter // Opt. Commun. 2013. V. 296. P. 149.
8. Zhao H., Yuan D. Design of fused-silica rectangular transmission gratings for polarizating beam splitter based on modal method // Appl. Opt. 2010. V. 49. P. 759.
9. Dai M., Wan W., Zhu X., Song B., Liu X., Lu M., Cui B., Chen Y. Broadband and wide angle infrared wire-grid polarizer // Opt. Experss. 2015. V. 23. P. 15390.
10. Feng J., Zhou C., Wang B., Zheng J. Three-port beam splitter of a binary fused-silica grating // Appl. Opt. 2008. V. 47. P. 6638.
11. Shu W., Wang B., Li H., Lei L., Chen L., Zhou J. High-efficiency three-port beam splitter of reflection grating with a metal layer // Superlattice. Microst. 2015. V. 85. P. 248.
12. Patorski K., Trusiak M., Pokorski K. Diffraction grating three-beam interferometry without self-imaging regime contrast modulations // Opt. Lett. 2015. V. 40. P. 1089.
13. Moharam M.G., Pommet D.A., Grann E.B. Stable implementation of the rigorous couple-wave analysis for surface-relief grating: enhanced transmittance matrix approach // J. Opt. Soc. Am. A. 1995. V. 12. P. 1077.