Automatic carrier signal track algorithm in all-digital PGC demodulation scheme for optical interferometric sensors
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Xiaohan Wang, Shengchun Piao, Jinshan Fu, Xiaoman Li Automatic carrier signal track algorithm in all-digital PGC demodulation scheme for optical interferometric sensors (Алгоритм автоматического отслеживания сигнала несущей частоты в цифровой схеме гомодинной демодуляции для оптических интерферометрических датчиков) [на англ. яз.] // Оптический журнал. 2017. Т. 84. № 4. С. 55–60.
Xiaohan Wang, Shengchun Piao, Jinshan Fu, Xiaoman Li Automatic carrier signal track algorithm in all-digital PGC demodulation scheme for optical interferometric sensors (Алгоритм автоматического отслеживания сигнала несущей частоты в цифровой схеме гомодинной демодуляции для оптических интерферометрических датчиков) [in English] // Opticheskii Zhurnal. 2017. V. 84. № 4. P. 55–60.
Xiaohan Wang, Shengchun Piao, Jinshan Fu, and Xiaoman Li, "Automatic carrier signal track algorithm in all-digital PGC demodulation scheme for optical interferometric sensors," Journal of Optical Technology. 84(4), 265-269 (2017). https://doi.org/10.1364/JOT.84.000265
An optimal all-digital Phase Generated Carrier (PGC) demodulation scheme for optical interferometric sensors is presented in order to reduce the effect of frequency and phase difference between the carrier and reference signals. First, the influence on the signal from the PGC demodulation scheme is discussed when the frequency and phase of carrier signal are inconsistent with the reference signal. It reveals that the different frequencies and phases will cause modulation and fading phenomenon in the output signal of the scheme. Second, a carrier signal track algorithm is proposed to lock the frequency and phase of the carrier signal in real time to reduce these influence the scheme. The frequency and phase of carrier signal can be tracked by frequency analysis, desample and curve fitting. After that, the measurement signal can be demodulated accurately by the scheme from the signal detected by the photodiode in real time. The accuracy and effectiveness of this algorithm is verified by experimental results.
interferometer, PGC, signal track
Acknowledgements:This work was supported by the National Nature Science Foundation of China (11234002).
OCIS codes: 120.5060
References:1. Dandridge A., Tveten A.B., Giallorenzi T.G. Homodyne demodulation scheme for fiber optic sensors using phase generated carrier // IEEE Transactions on Microwave Theory and Techniques. 1982. V. 18. Iss. 10. P. 1647–1653.
2. Dandridge A., Tveten A.B., Kersey A.D., Yurek A. Multiplexing of interferometric sensors using phase carrier techniques // Lightwave Technology. 1987. V. 5. Iss. 7. P. 947–952.
3. Bush I.J. Phase-lock fiber optic interferometer. Google Patents (US4486657) 1984.
4. Vera-Salas L.A., Moreno-Tapia S.V., Garcia-Perez A., Romero-Troncoso R.D.J., Osornio-Rios R.A., Serroukh I., Cabal-Yepez E. PGA-Based Smart Sensor for Online Displacement Measurements Using a Heterodyne Interferometer // Sensors. 2011. V. 11. Iss. 8. P. 7710–7723.
5. Morozov A.N., Tabalin S.E., Fufurin I.L., Svetlichnyĭ S.I. Physical principles of the design of an interferometer with a rotating plate // Journal of Optical Technology. 2013. V. 80. Iss. 8. P. 495–498.
6. Ishige M., Matsuura F., Kawasugi M., Aketagawa M. Phase modulation homodyne interferometer with a 10-pm resolution using a tunable laser diode // International Journal of Precision Engineering and Manufacturing. 2007. V. 8. Iss. 2. P. 80–84.
7. Lan T., Zhang C.-x., Li L.-j., Luo G.-m., Li C. Carrier phase advance technique for digital PGC demodulation [J] // Opto-Electronic Engineering. 2008. V. 35. Iss. 7. P. 49–52.
8. Basile G., Bergamin A., Cavagnero G., Mana G. Phase modulation in high-resolution optical interferometry // Metrologia. 1991. V. 28. Iss. 28. P. 445–461.
9. Lin M., Yan L., Yang L., Zhi-bo L., Shui-sheng J. Analysis of frequency drift effects in the phase-generated carrier method // Acta Photonica Sinica. 2013. V. 42. Iss. 1. P. 34–37.