УДК: 538.958, 538.971, 539.21
Infrared absorption of diamond nanoparticles with a surface modified by complexes of nitrate ions
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Осипов В.Ю., Романов Н.М. Инфракрасное поглощение алмазных наночастиц с поверхностью, модифицированной комплексами нитрат-ионов // Оптический журнал. 2017. Т. 84. № 5. С. 3–7.
Osipov V.Yu., Romanov N.M. Infrared absorption of diamond nanoparticles with a surface modified by complexes of nitrate ions [in Russian] // Opticheskii Zhurnal. 2017. V. 84. № 5. P. 3–7.
V. Yu. Osipov and N. M. Romanov, "Infrared absorption of diamond nanoparticles with a surface modified by complexes of nitrate ions," Journal of Optical Technology. 84(5), 285-288 (2017). https://doi.org/10.1364/JOT.84.000285
The infrared-absorption spectrum of detonation nanodiamond (DND) particles with a surface modified by complexes of nitrate ions is characterized by a narrow line of strong absorption at 1384 cm−1 and an unstructured absorption band in the range of 1000–1300 cm−1. The DND surface is predominantly functionalized with oxygen-containing atomic groups, and the nitrate ion is in a coordinate position over a surface defect in the diamond lattice, i.e., positively charged substitutional nitrogen. Because of heat treatment in air at 350°C, the absorption line at 1384 cm−1 disappears, which indicates the decomposition of the complex and removal of nitrate ions from the surface of the DND particles. The specific form of the infrared-absorption spectrum allows us to consider such a complex on the surface of the DND as a characteristic marker for the detection of these particles in mixtures and suspensions.
IR spectroscopy, nanodiamond, surface modification, nitrate ion, complex vibrational modes
Acknowledgements:The authors are grateful to A. Ya. Vul’ (PTI) and I. B. Zakharova (SPbSPU) for their attention to this work. This research was supported by the RSF (Project 14-13-00795: “Synthesis of optically active materials based on nanodiamonds modified by ions of 3d–4f elements”).
OCIS codes: 300.6340, 160.4236, 350.4990, 300.6520
References:1. H. Man, J. Sasine, E. K. Chow, and D. Ho, “Nanodiamond,” in Nanodiamonds for Drug Delivery and Diagnostics, O. A. Williams, ed. (Royal Society of Chemistry, Cambridge, UK, 2014), Chap. 7, pp. 151–169.
2. V. N. Mochalin, O. Shenderova, D. Ho, and Y. Gogotsi, “The properties and applications of nanodiamonds,” Nat. Nanotechnol. 7(1), 11–23 (2012).
3. A. Vul’ and O. Shenderova, eds., Detonation Nanodiamonds: Science and Applications (Pan Stanford, Singapore, 2014).
4. V. Y. Osipov, A. E. Aleksenskiy, A. I. Shames, A. M. Panich, M. S. Shestakov, and A. Y. Vul’, “Infrared absorption study of surface functional groups providing chemical modification of nanodiamonds by divalent copper ion complexes,” Diamond Relat. Mater. 20(8), 1234–1238 (2011).
5. I. D. Gridnev, V. Y. Osipov, A. E. Aleksenskiy, A. Y. Vul’, and T. Enoki, “Combined experimental and DFT study of the chemical binding of copper ions on the surface of nanodiamonds,” Bull. Chem. Soc. Jpn. 87(6), 693–704 (2014).
6. V. Y. Osipov, A. E. Aleksenskiy, K. Takai, and A. Y. Vul’, “Magnetic studies of a detonation nanodiamond with the surface modified by gadolinium ions,” Phys. Solid State 57(11), 2314–2319 (2015).
7. A. M. Panich, A. I. Shames, N. A. Sergeev, V. Y. Osipov, A. E. Alexenskiy, and A. Y. Vul’, “Magnetic resonance study of gadolinium-grafted nanodiamonds,” J. Phys. Chem. C 120(35), 19804–19811 (2016).
8. V. M. Vdovenko, ed., Spectroscopic Methods in the Chemistry of Complex Compounds (Khimiya, LO, Moscow–Leningrad, 1964).
9. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th ed. (Wiley, New York, 1986).
10. D. J. Goebbert, E. Garand, T. Wende, R. Bergmann, G. Meijer, K. R. Asmis, and D. M. Neumark, “Infrared spectroscopy of the micro-hydrated nitrate ions NO 3─(H 2 O) 1-6 ,” J. Phys. Chem. A 113(26), 7584–7592 (2009).