ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 621.373.826

Prospects of using quantum-cascade lasers in optoelectronic countermeasure systems: review

For Russian citation (Opticheskii Zhurnal):

Абрамов П.И., Кузнецов Е.В., Скворцов Л.А. Перспективы применения квантово-каскадных лазеров в системах оптико-электронного противодействия. Обзор // Оптический журнал. 2017. Т. 84. № 5. С. 56–70.

 

Abramov P.I., Kuznetsov E.V., Skvortsov L.A. Prospects of using quantum-cascade lasers in optoelectronic countermeasure systems: review [in Russian] // Opticheskii Zhurnal. 2017. V. 84. № 5. P. 56–70.

For citation (Journal of Optical Technology):

P. I. Abramov, E. V. Kuznetsov, and L. A. Skvortsov, "Prospects of using quantum-cascade lasers in optoelectronic countermeasure systems: review," Journal of Optical Technology. 84(5), 331-341 (2017). https://doi.org/10.1364/JOT.84.000331

Abstract:

This paper discusses existing and prospective laser devices for countermeasure systems that operate in the IR region. Attention is mainly devoted to questions of counteracting imaging seekers that function in the IR region and of suppressing thermal-vision observation, reconnaissance, and aiming equipment. Our critical analysis of the available literature data makes it possible to conclude that quantum-cascade lasers can be used in creating promising compact multispectral IR countermeasure systems. Estimates are given of how much radiation power quantum-cascade lasers need for the functional suppression of remote photodetector devices. The results of the calculations are in satisfactory agreement with the available literature data. It is shown that existing ways of enhancing the radiation power of quantum-cascade lasers make it possible to achieve the values needed to use them in IR countermeasure systems.

Keywords:

optoelectronic countermeasure systems, IR imaging seekers, thermal-vision observation, reconnaissance and aiming equipment, quantum-cascade lasers

OCIS codes: 140.5960, 140.3070

References:

1. V. V. Butuzov, “Laser versus MANPADS,” Voen. Oboz. (8), 23 (2013).
2. C. J. Willers and M. S. Willers, “Simulating the DIRCM engagement: component and system,” Proc. SPIE 8543, 85430M (2012).
3. R. M. A. Schleijpen, J. C. Heuvel, A. L. Mieremet, B. Mellier, and F. J. M. Putten, “Laser dazzling of focal plane array cameras,” Proc. SPIE 6738, 67380O (2007).
4. N. Hueber, D. Vincent, A. Morin, A. Dieterlen, and P. Raymond, “Analysis and quantification of laser-dazzling effects on IR focal plane arrays,” Proc. SPIE 7660, 766042 (2010).
5. R. Doskočil and J. Farlík, “Self-protection of aircraft versus resistance of missile optic seekers,” Adv. Mil. Technol. 5(2), 5 (2010).
6. A. Ericsson, O. Steinval, L. Sjöqvist, and M. Lindgren, “Tunable lasers for countermeasures—a literature survey,” Scientific Report FOI-R-0536-SE (Swedish Defence Research Agency, 2002).
7. D. Titterton, “A review of the development of optical countermeasures,” Proc. SPIE 5615, 1 (2004).
8. D. Titterton, “Requirements for laser devices used in countermeasure applications,” Proc. SPIE 5989, 67 (2005).
9. R. M. A. Schleijpen, J. C. Heuvel, A. L. Mieremet, B. Mellier, and F. J. M. Putten, “Laser dazzling of focal-plane-array cameras,” Proc. SPIE 6543, 65431B (2007).
10. N. N. Mordvin, “Suppressing the operation of long-wavelength thermal-vision systems based on a cooled microbolometric array,” Interékspo Geo-Sibir’ 5(1), 12 (2010).
11. “Northrop Grumman: A World Leader in Infrared Countermeasures,” Defense Daily, http://www.northropgrumman.com/Capabilities/DIRCM/Documents/northrop_grumman_ircm.pdf.
12. A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3-W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95, 141113 (2009).
13. E. Takeuchi, W. Chapman, D. Arnone, M. Pushkarsky, E. Lopez, M. Young, D. Caffey, B. Borgardt, A. Priest, J. Sensibaugh, and T. Day, “High-power, military ruggedized QCL-based laser systems,” Proc. SPIE 8373, 71 (2012).
14. http://www.pranalytica.com/core‑technologies/quantum‑cascade‑lasers.php.
15. https://navystp.com/vtm/print?project=N68936‑16‑C‑0027.
16. C. Yu. Polyakov, V. M. Lenkin, S. S. Korolev, and G. A. Zmievskoı˘, “Ways of improving countermeasures against thermal-vision reconnaissance,” Zb. Nauk. Pr. Khark. Univ. Povitryanikh Sil. 1(42), 7 (2015).
17. G. M. Zverev, E. A. Levchuk, S. A. Kolyadin, and L. A. Skvortsov, “Investigation of the damage to dielectric films by laser radiation,” Sov. J. Quantum Electron. 7(2), 227 (1977) [Kvant. Elektron. (Moscow) 4(2), 413 (1977)].
18. V. N. Lopatkin, O. E. Sidoryuk, and L. A. Skvortsov, “Laser modulation photothermal radiometer—a new method for measuring weakabsorption in bulk materials and coatings,” Sov. J. Quantum Electron. 15(2), 216 (1985) [Kvant. Elektron. (Moscow) 12(2), 339 (1985)].
19. J. F. Ready, Effects of High-Power Laser Radiation (Academic Press, Orlando, 1971; Mir, Moscow, 1974).
20. W. J. Diehl, “Continued optical sensor operations in a laser environment,” Maxwell Paper No. 64 (Air War College, Maxwell Air Force Base, 2012).
21. A. Durecu, D. Fleury, D. Goular, C. Planchat, S. Rommeluere, and P. Bourdon, “Dazzling sensitivity analysis of a microbolometer array on an infrared laser irradiation breadboard,” in OPTRO, Paris, 2014, pp. 1–13.
22. http://www.plasmalabs.ru/files/products/lcd.pdf.
23. N. A. Kalintseva and A. V. Kopyl’tsov, “Mathematical modeling of parametric frequency conversion for the MWIR range,” Izv. Ross. Gos. Pedagog. Univ. im. A. I. Gertse (138), 16 (2011).
24. K. T. Zawilski, S. D. Setzler, P. G. Schunemann, and T. M. Pollak, “Laser damage threshold of single crystal ZnGeP 2 at 2.05 mm,” Proc. SPIE 5991, 50 (2005).
25. G. L. Zhu, Y. L. Ju, C. H. Zhang, B. Q. Yao, and Y. Z. Wang, “High-power, high-quality ZGP OPO pumped by a Tm, Ho:GdVO 4 laser,” Laser Phys. 20, 1341 (2010).
26. Y. Peng, X. Wei, W. Wang, and D. Li, “High-power 3.8 μm tunable optical parametric oscillator based on PPMgO:ClN,” Opt. Commun. 283(20), 4032 (2010).
27. T. Chen, K. Wei, P. Jiang, B. Wu, and Y. Shen, “High-power multi-channel PPMgLN-based optical parametric oscillator pumped by a master oscillation power amplification-structured Q-switched fiber laser,” Appl. Opt. 51(28), 6881 (2012).
28. Y. Peng, X. Wei, Z. Nie, X. Luo, J. Peng, Y. Wang, and D. Shen, “High-power, narrow-bandwidth mid-infrared PPMgLN optical parametric oscillator with a volume Bragg grating,” Opt. Express 23(24), 30827 (2015).
29. Y. Shang, J. Xu, P. Wang, X. Li, P. Zhou, and X. Xu, “Ultra-stable high-power mid-infrared optical parametric oscillator pumped by a super-fluorescent fiber source,” Opt. Express 24(19), 21684 (2016).
30. V. Petrov, “Progress in 1-μm pumped mid-IR optical parametric oscillators based on non-oxide nonlinear crystals,” IEEE J. Sel. Top. Quantum Electron. 21(1), 193 (2015).
31. M. Schellhorn, M. Eichhorn, C. Kieleck, and A. Hirth, “High repetition rate mid-infrared laser source,” C. R. Phys. 8(10), 1151 (2007).
32. V. Petrov, “Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals,” Prog. Quantum Electron. 42, 1 (2015).
33. R. Piccoli, F. Pirzio, A. Agnesi, V. Badikov, D. Badikov, G. Marchev, and V. Petrov, “Narrow bandwidth, picosecond, 1064-nm pumped optical parametric generator for the mid-IR based on HgGa 2 S 4 ,” Opt. Lett. 39(16), 4895 (2014).
34. N. Y. Kostyukova, A. Boyko, V. Badikov, D. Badikov, G. Shevyrdyaeva, V. Panyutin, and V. Petrov, “Widely tunable in the mid-IR BaGa4 Se 7 optical parametric oscillator pumped at 1064 nm,” Opt. Lett. 41(15), 3667 (2016).
35. M. Vainio and L. Halonen, “Mid-infrared optical parametric oscillators and frequency combs for molecular spectroscopy,” Phys. Chem. Chem. Phys. 18(6), 4266 (2016).
36. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553 (1994).
37. P. Rauter and F. Capasso, “Multi-wavelength quantum cascade laser arrays,” Laser Photon. Rev. 9(5), 452 (2015).
38. M. S. Vitiello, G. Scalari, B. Williams, and P. Natale, “Quantum cascade lasers: 20 years of challenges,” Opt. Express 23(4), 5167 (2015).
39. M. Razeghi, N. Bandyopadhyay, Y. Bai, Q. Lu, and S. Slivken, “Recent advances in mid infrared (3–5-μm) quantum cascade lasers,” Opt. Mat. Express 3(11), 1872 (2013).
40. A. Goyal, C. Pfluegl, L. Diehl, M. Belkin, A. Sanchez-Rubio, and F. Capasso, “Wavelength beam combining of quantum cascade laser arrays,” U.S. Patent 2012/0033697 A1 (2011).
41. B. G. Lee, J. Kansky, A. K. Goyal, C. Pflugl, L. Diehl, M. A. Belkin, A. Sanchez, and F. Capasso, “Beam combining of quantum cascade laser arrays,” Opt. Express 17(18), 16216 (2009).
42. A. Goyal, T. Myers, C. A. Wang, M. Kelly, B. Tyrrell, B. Gokden, A. Sanchez, G. Turner, and F. Capasso, “Active hyperspectral imaging using a quantum cascade laser (QCL) array and digital-pixel focal plane array (DFPA) camera,” Opt. Express 22(12), 14392 (2014).
43. P. Rauter, S. Menzel, A. K. Goyal, C. A. Wang, A. Sanchez, G. Turner, and F. Capasso, “High-power arrays of quantum cascade laser master-oscillator power-amplifiers,” Opt. Express 21(4), 4518 (2013).
44. A. Mukherjee, M. Prasanna, and N. Mukherjee, “Optically multiplexed mid-infrared laser systems and uses thereof,” U.S. Patent 2013/029271 A1 (2011).
45. A. Yu. Egorov, A. V. Babichev, L. Ya. Karachinskiı˘, I. I. Novikov, E. V. Nikitina, M. Tchernycheva, A. N. Sofronov, D. A. Firsov, L. E. Vorob’ev, N. A. Pikhtin, and I. S. Tarasov, “Lasing of multiperiod quantum-cascade lasers in the spectral range of (5.6–5.8)-μm under current pumping,” Semiconductors 49(11), 1527 (2015) [Fiz. Tekh. Poluprovod. 49(11), 1574 (2015)].
46. A. Yu. Egorov, P. N. Brunkov, E. V. Nikitina, E. V. Pirogov, M. S. Sobolev, A. A. Lazarenko, M. V. Baı˘dakova, D. A. Kirilenko, and S. G. Konnikov, “Multiperiod quantum-cascade nanoheterostructures: epitaxy and diagnostics,” Semiconductors 48(12), 1600 (2014) [Fiz. Tekh. Poluprovod. 48(12), 1640 (2014)].
47. A. V. Babichev, A. Bousseksou, N. A. Pikhtin, I. S. Tarasov, E. V. Nikitina, A. N. Sofronov, L. E. Firsov, D. A. Vorob’ev, I. I. Novikov, L. Ya. Karachinskiı˘, and A. Yu. Egorov, “Room-temperature operation of quantum cascade lasers at a wavelength of 5.8 μm,” Semiconductors 50(10), 1299 (2016) [Fiz. Tekh. Poluprovod. 50(10), 1320 (2016)].
48. M. Razeghi, “High-power high-wall plug efficiency mid-infrared quantum cascade lasers based on InP/GaInAs/InAlAs material system,” Proc. SPIE 7230, 723011 (2009).
49. R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, F. Capasso, and C. K. N. Patel, “High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings,” Appl. Phys. Lett. 95, 151112 (2009).
50. M. Troccoli, L. Diehl, D. P. Bour, S. W. Corzine, N. Yu, C. Y. Wang, M. A. Belkin, G. Hofler, R. Lewicki, G. Wysocki, F. K. Tittel, and F. Capasso, “High-performance quantum cascade lasers grown by metal-organic vapor phase epitaxy and their applications to trace gas sensing,” J. Lightwave Technol. 26, 3534 (2008).
51. A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek., R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “1.6-W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm,” Appl. Phys. Lett. 92, 111110 (2008).
52. D. Hofstetter, M. Beck, T. Aellen, and J. Faist, “High-temperature operation of distributed feedback quantum-cascade lasers at 5.3 μm,” Appl. Phys. Lett. 78, 396 (2001).
53. P. Rauter and F. Capasso, “Multi-wavelength quantum cascade laser arrays,” Laser Photon. Rev. 9(5), 452 (2015).
54. I. I. Zasavitskiı˘, “Quantum cascade lasers,” in Twelfth All-Russia Youth Concourse—Conference on Optics and Laser Physics, Samara, November 12–16, 2014.