УДК: 535.36
Lidar system for monitoring radioactive contamination of atmospheric air
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Привалов В.Е., Шеманин В.Г. Лидарная система мониторинга радиоактивного загрязнения атмосферного воздуха // Оптический журнал. 2017. Т. 84. № 5. С. 8–12.
Privalov V.E., Shemanin V.G. Lidar system for monitoring radioactive contamination of atmospheric air [in Russian] // Opticheskii Zhurnal. 2017. V. 84. № 5. P. 8–12.
V. E. Privalov and V. G. Shemanin, "Lidar system for monitoring radioactive contamination of atmospheric air," Journal of Optical Technology. 84(5), 289-293 (2017). https://doi.org/10.1364/JOT.84.000289
The potential of a lidar system for monitoring the contamination of atmospheric air with radionuclides of cesium, strontium, xenon, and krypton was evaluated on the basis of differential absorption (DA) and resonance fluorescence to determine the minimum possible concentrations. The obtained results for the solution of the lidar equation show that the lidar system of DA and scattering can be used to determine the concentration of the investigated radionuclides in the atmosphere in the range of 108–1015 cm−3 on a path up to 10 km long at selected wavelengths of laser radiation, which agrees well with previous results for isotopes of iodine. Lidar fluorescent probing of the investigated radionuclides in the atmosphere at selected wavelengths of laser radiation is possible at distances up to 400 m.
lidar equation, lidar system for monitoring, differential absorption, resonance fluorescence, radionuclides, atmosphere
OCIS codes: 010.0010,140.0140, 280.0280
References:1. V. E. Privalov, A. É. Fotiadi, and V. G. Shemanin, Lasers and Ecological Monitoring of the Atmosphere (Lan’, St. Petersburg, 2013).
2. V. E. Privalov and V. G. Shemanin, “Parameters of a fluorescent lidar for probing molecular iodine in the atmosphere,” Opt. Atmof. Okean 11, 237–239 (1998).
3. V. E. Privalov and V. G. Shemanin, “Parameters of differential absorption lidar for detecting molecular iodine in the atmosphere,” J. Opt. Technol. 66, 112–114 (1999) [Opt. Zh. 66(2), 40–42 (1999)].
4. V. E. Privalov and V. G. Shemanin, “A lidar equation with allowance for the finite width of the lasing mode,” Bull. Russ. Acad. Sci. 79, 149–159 (2015) [Izv. Ross. Akad. Nauk, Ser. Fiz. 79(2), 170-180 (2015)].
5. É. I. Voronina, V. E. Privalov, and V. G. Shemanin, “Lidar sounding of iodine molecules at low pressures,” Opt. Spectrosc. 93, 643–645 (2002) [Opt. Spektrosk. 93(4), 699–701 (2002)].
6. R. Mezheris, Laser Remote Probing (Mir, Moscow, 1987).
7. V. V. Zuev, M. Yu. Kataev, M. M. Makogon, and A. A. Mitsel’, “Lidar method of differential absorption. Current state of research,” Opt. Atmof. Okean 8, 1136–1164 (1995).
8. A. N. Zaidel’, Atomic Fluorescence Analysis (Khimiya, Leningrad 1983).
9. V. E. Privalov and V. G. Shemanin, “Lidars for control and measurements,” Proc. SPIE 3345, 6–10 (1998).