УДК: 535.015
Generation of 2.5-octave spectral supercontinuum in a deuterium-oxide jet
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Боримова А.А., Цыпкин А.Н., Путилин С.Э., Беспалов В.Г., Козлов С.А. Генерация спектрального суперконтинуума шириной в 2,5 октавы в струе оксида дейтерия // Оптический журнал. 2017. Т. 84. № 6. С. 10–15.
Borimova A.A., Tsypkin A.N., Putilin S.E., Bespalov V.G., Kozlov S.A. Generation of 2.5-octave spectral supercontinuum in a deuterium-oxide jet [in Russian] // Opticheskii Zhurnal. 2017. V. 84. № 6. P. 10–15.
A. A. Borimova, A. N. Tsypkin, S. É. Putilin, V. G. Bespaslov, and S. A. Kozlov, "Generation of 2.5-octave spectral supercontinuum in a deuterium-oxide jet," Journal of Optical Technology. 84(6), 368-372 (2017). https://doi.org/10.1364/JOT.84.000368
We have performed the first theoretical and experimental studies of the production of a femtosecond spectral supercontinuum in a deuterium-oxide (D2O) jet. When pumped by laser pulses with an incoming central wavelength of 800 nm, width of 40 fs, and maximum intensity of 8.8×1013 W/cm2, the supercontinuum spectrum generated in a 1.8-mm thick jet of deuterium oxide extended from 350 to 1700 nm (measured at the 0.1 level), which is 30% wider than the supercontinuum bandwidth previously observed under similar conditions in a hydrogen oxide (H2O) jet. At a pulse intensity of 2.5×1012 W/cm2, the deuterium-oxide supercontinuum had an intensity of 6.6×1011 W/cm2, for a conversion efficiency of 70%. Filamentation was observed in the pump radiation at an incoming intensity of 5.0×1012 W/cm2, which is 1.5 times smaller than the filament formation intensity for hydrogen oxide.
spectral supercontinuum, nonlinear femtosecond optics, deuterium-oxide
OCIS codes: 320.7120, 320.0320, 320.2250
References:1. R. Alfano and S. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24(11), 584–587 (1970).
2. A. Penzkofer, A. Laubereau, and W. Kaiser, “Stimulated short-wave radiation due to single-frequency resonances of χ(3) ,” Phys. Rev. Lett. 31(14), 863–866 (1973).
3. P. Corkum, C. Rolland, and T. Srinivasan-Rao, “Supercontinuum generation in gases,” Phys. Rev. Lett. 57(18), 2268–2271 (1986).
4. P. Corkum, P. Ho, R. Alfano, and J. Manassah, “Generation of infrared supercontinuum covering 3–14 μm in dielectrics and semiconductors,” Opt. Lett. 10(12), 624–626 (1985).
5. P. Baldeck and R. Alfano, “Intensity effects on the stimulated four photon spectra generated by picosecond pulses in optical fibers,” J. Lightwave Technol. 5(12), 1712–1715 (1987).
6. M. N. Islam, G. Sucha, I. Bar-Joseph, M. Wegener, J. P. Gordon, and D. S. Chemla, “Femtosecond distributed soliton spectrum in fibers,” J. Opt. Soc. Am. B 6(6), 1149–1158 (1989).
7. K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. Windeler, “Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber,” Appl. Phys. B 77(2), 269–277 (2003).
8. A. C. Peacock, J. R. Sparks, and N. Healy, “Semiconductor optical fibres: progress and opportunities,” Laser Photon. Rev. 8(1), 53–72 (2014).
9. K. V. Dukel’skii, Y. N. Kondrat’ev, A. V. Khokhlov, V. S. Shevandin, A. M. Zheltikov, S. O. Konorov, E. E. Serebryannikov, D. A. Sidorov-Biryukov, A. B. Fedotov, and S. L. Semenov, “Microstructured light-guides with a quartz core for obtaining a spectral supercontinuum in the femtosecond range,” J. Opt. Technol. 72(7), 548–550 (2005) [Opt. Zh. 72(7), 57–60 (2005)].
10. B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. St. J. Russell, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Opt. Lett. 27(20), 1800–1802 (2002).
11. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air–silica microstructure optical fiber,” Opt. Lett. 26(9), 608–610 (2001).
12. G. Humbert, W. Wadsworth, S. Leon-Saval, J. Knight, T. Birks, P. St. J. Russell, M. Lederer, D. Kopf, K. Wiesauer, E. Breuer, and D. Stifter, “Supercontinuum generation system for optical coherence tomography based on tapered photonic crystal fibre,” Opt. Express 14(4), 1596–1603 (2006).
13. M. A. Volynskiı˘, I. P. Gurov, P. A. Ermolaev, and P. S. Skakov, “Comparative analysis of extended Kalman filtering and the sequential Monte Carlo method, using probability models of signals in optical coherent tomography,” J. Opt. Technol. 82(8), 533–537 (2015) [Opt. Zh. 82(8), 54–60 (2015)].
14. A. M. Zheltikov, “Let there be white light: supercontinuum generation by ultrashort laser pulses,” Phys.-Usp. 49, 605–628 (2006) [Usp. Fiz. Nauk 176(6), 623–649 (2006)].
15. M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68(20), 2793–2795 (1996).
16. A. N. Tsypkin, S. E. Putilin, M. V. Mel’nik, S. A. Kozlov, and S. S. Klykov, “The transmission of 45 bits of information by a pair of interfering femtosecond pulses with superwide spectra,” J. Opt. Technol. 80(7), 466–469 (2013) [Opt. Zh. 80(7), 78–82 (2013)].
17. A. N. Tsypkin, S. É. Putilin, A. V. Okishev, and S. A. Kozlov, “Ultrafast information transfer through optical fiber by means of quasidiscrete spectral supercontinuums,” Opt. Eng. 54(5), 056111 (2015).
18. A. Dobryakov, S. Kovalenko, A. Weigel, J. Pérez-Lustres, J. Lange, A. Müller, and N. Ernsting, “Femtosecond pump/supercontinuum-probe spectroscopy: optimized setup and signal analysis for single-shot spectral referencing,” Rev. Sci. Instrum. 81, 113106 (2010).
19. M. O. Osipova and E. Y. Perlin, “Two-photon absorption of quasi-teady-state radiation and supershort light pulses in broad-band semiconductors,” J. Opt. Technol. 83(6), 329–331 (2016) [Opt. Zh. 83(6), 3–6 (2016)].
20. I. Golub, “Optical characteristics of supercontinuum generation,” Opt. Lett. 15(6), 305–307 (1990).
21. A. Brodeur and S. Chin, “Ultrafast white-light continuum generation and self-focusing in transparent condensed media,” J. Opt. Soc. Am. B 16(4), 637–650 (1999).
22. X. Jiang, J. Qiu, H. Zeng, and C. Zhu, “Laser-controlled precipitation of gold nanoparticles in silicate glasses,” J. Mater. Res. 18(9), 2097–2100 (2003).
23. N. Ma, H. Ma, M. Zhong, J. Yang, Y. Dai, G. Ye, Z. Yue, G. Ma, and J. Qiu, “Direct precipitation of silver nanoparticles induced by a high repetition femtosecond laser,” Mater. Lett. 63, 151–153 (2009).
24. A. Tcypkin, S. Putilin, M. Melnik, E. Makarov, V. Bespalov, and S. Kozlov, “Generation of high-intensity spectral supercontinuum of more than two octaves in a water jet,” Appl. Opt. 55(29), 8390–8394 (2016).
25. C. Cordeiro, W. Wadsworth, T. Birks, and P. St. J. Russell, “Engineering the dispersion of tapered fibers for supercontinuum generation with a 1064 nm pump laser,” Opt. Lett. 30(15), 1980–1982 (2005).
26. S. Kedenburg, M. Vieweg, T. Gissibl, and H. Giessen, “Linear refractive index and absorption measurements of nonlinear optical liquids in the visible and near-infrared spectral region,” Opt. Mater. Express 2(11), 1588–1611 (2012).
27. M. Weber, Handbook of Optical Materials (CRC Press, Boca Raton, 2003).
28. V. G. Bespalov, S. A. Kozlov, Yu. A. Shpolyanskiy, and I. A. Walmsley, “Simplified field wave equations for the nonlinear propagation of extremely short light pulses,” Phys. Rev. A 66(1), 013811 (2002).
29. S. A. Kozlov and V. V. Samartsev, Fundamentals of Femtosecond Optics (Cambridge International Science Publishing and Woodhead Publishing, Cambridge, 2013).
30. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 2007).
31. Y. Shpolyanskiı˘, A. Berkovskii, and M. Bahtin, Technical Documentation for LBullet Software (ITMO University, Saint Petersburg, 2008).
32. R. Sheffield, K. Boyer, and A. Javan, “Study of vibrational and rotational relaxations in D 2 O,” Opt. Lett. 5(1), 10–11 (1980).