Beamforming system based on paralleled variable chirped microwave signal generators
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Dalei Chen, Peng Xiang, Rong Wang, Tao Pu, Jiyong Zhao, and Yipeng Zhang Beamforming system based on paralleled variable chirped microwave signal generators (Численное моделирование системы формирования диаграммы направленности антенны на основе параллельных микроволновых генераторов с переменной линейной частотной модуляцией) [на англ. яз.] // Оптический журнал. 2017. Т. 84. № 6. С. 37–43.
Dalei Chen, Peng Xiang, Rong Wang, Tao Pu, Jiyong Zhao, and Yipeng Zhang Beamforming system based on paralleled variable chirped microwave signal generators (Численное моделирование системы формирования диаграммы направленности антенны на основе параллельных микроволновых генераторов с переменной линейной частотной модуляцией) [in English] // Opticheskii Zhurnal. 2017. V. 84. № 6. P. 37–43.
Dalei Chen, Peng Xiang, Rong Wang, Tao Pu, Jiyong Zhao, and Yipeng Zhang, "Beamforming system based on paralleled variable chirped microwave signal generators," Journal of Optical Technology. 84(6), 390-394 (2017). https://doi.org/10.1364/JOT.84.000390
Optically controlled beamforming technology has attracted a lot of research interests for its unique advantages and application in Phase Arrayed Antennas (PAAs). In this paper, a novel scheme of optically controlled beamforming system based on an array of chirped microwave signal generators is proposed. In the proposed system, an array of photonic microwave delay line filters (PMDLFs) with quadratic phase response is configured, and chirped microwave signals, which are then applied to the antennas, are generated by processing a chirped-free Gaussian pulse by to those filters, and the relative delay among those chirped microwave signals can be controlled by tuning the optical carries’ wavelength in each path. Therefore, the system can realize optically controlled beamforming by successfully combining photonic generation of chirped microwave signal with optical true time delay (OTTD). As the PMDLFs frequency response can be flexibly varied, the generated microwave signal waveforms can be adjustable to suit the need of different applications. A theoretical analysis of the proposed beamforming system is carried out and its feasibility is verified by numerical simulations.
microwave photonics, beamforming, optical true time delay, microwave photonic filter, chirped microwave waveform generator, phased array antennas
Acknowledgements:The work described in this paper was supported in part by the National Natural Science Foundation of China under Grant Nos. 61032005, 61177065, and 61174199, the National Basic Research Program of China (973 Program) under Grant No. 2012CB315603, and the Natural Science Foundation of Jiangsu Province under Grant No. BK20140069.
OCIS codes: 060.5625; 060.2360; 350.4010
References:1. Byung-Min Jung, Jong-Dug Shin, Boo-Gyoun Kim. Optical true time-delay for two-dimensional X-band phased array antennas // IEEE Photon. Technol. Lett. 2007. V. 19. № 12. Jun. P. 877–879.
2. Zmuda H., Soref R.A., Payson P., Johns S., Toughlian E.N. Photonic beamformer for phased array antennas using a fiber grating prism // IEEE Photon. Technol. Lett. 1997. V. 9. № 2. Feb. P. 241–243.
3. Esman R.D., Frankel M.Y., Dexter J.L., Goldbreg L., Parent M.G., Stilwell D., Cooper D.G. Fiber-optic prism true time-Delay Antenna Feed // IEEE Photon. Technol. Lett. 1993. V. 5. № 11. P. 1347–1349.
4. Zmuda H., Soref R.A., Payson P., Johns S., Toughlian E.N. Photonic beamformer for phased array antennas using a fiber grating prism // IEEE Photon. Technol. Lett. 1997. V. l.9. № 2. P. 241–243.
5. Yao Y., Yang J., Liu Y. Continuous true time-delay beamforming employing a multiwavelength tunable fiber laser source // IEEE Photon. Technol. Lett. 2002. V. 14. № 5. P. 687–689.
6. Pisco M., Campopiano S., Cutolo A., Cusano A. Continuously variable optical delay line based on a chirped fiber bragg grating // IEEE Photon. Technol. Lett. 2006. V. 18. № 24. P. 2551–2553.
7. Corral J.L., Marti J., Fuster J.M., Laming R.I. Dispersion-induced bandwidth limitation of variable true time delay lines based on linearly chirped Bragg gratings // IEEE Electronics Letters. 1998. V. 34. № 2. P. 209–211.
8. Ming Li, Li-Yang Shao, Jacques Albert, Jianping Yao. Tilted f iber Bragg grating for chirped microwave waveform generation // IEEE Photon. Technol. Lett. 2011. V. 23. № 5. P. 314–316.
9. Li M., Yao J.P. Photonic generation of continuously tunable chirped microwave waveforms based on a temporal interferometer incorporating an optically-pumped linearly-chirped fiber Bragg grating // IEEE Trans. Microw. Theory Tech. 2011. V. 50. № 12. P. 3531–3537.
10. Weilin Liu, Wangzhe Li, Jianping Yao. Real-time interrogation of a linearly chirped fiber Bragg grating sensor for simultaneous measurement of strain and temperature // IEEE Photon. Technol. Lett. 2011. V. 23. № 18. P. 1340–1342.
11. Xiao S., McKinney J.D., Weiner A.M. Photonic microwave arbitrary waveform generation using a virtuallyimaged phased-array direct space-to-time pulse shaper // IEEE Photon. Technol. Lett. 2004. V. 16. № 8. P. 1936–1938.
12. McKinney J.D., Leaird D.E., Weiner A.M. Millimeter-wave arbitrary waveform generation with a direct space-to-time pulse shaper // Opt. Lett. 2002. V. 27. № 15. P. 1345–1347.
13. Dai Y., Yao J.P. Nonuniformly spaced photonic microwave delay-line filters and applications // IEEE Trans. Microw. Theory Tech. 2010. V. 58. № 11. P. 3279–3289.
14. Dai Y. Yao, J.P. Chirped microwave pulse generation using a photonic microwave delay-line filter with a quadratic phase response // IEEE Photon. Technol. Lett. 2009. V. 21. № 9. P. 569–571.
15. Yuechun Shi, Simin Li, Lianyan Li, Renjia Guo, Tingting Zhang, Liu Rui, Weichun Li, Linlin Lu, Tang Song, Yating Zhou, Jingsi Li, Xiangfei Chen. Study of the multiwavelength DFB semiconductor laser array based on the reconstruction-equivalent-chirp technique // IEEE J. Lightw. Technol. 2013. V. 31. № 20. P. 3243–3250.