УДК: 621.373.826, 551.510.411
Study of the possibility of using a parametric-light-generator-based laser system for lidar probing of the composition of the atmosphere
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Матвиенко Г.Г., Романовский О.А., Садовников С.А., Суханов А.Я., Харченко О.В., Яковлев С.В. Исследование возможности применения лазерной системы на основе параметрического генератора света для лидарного зондирования состава атмосферы // Оптический журнал. 2017. Т. 84. № 6. С. 58–65.
Matvienko G.G., Romanovskiy O.A., Sadovnikov S.A., Sukhanov A.Ya., Kharchenko O.V., Yakovlev S.V. Study of the possibility of using a parametric-light-generator-based laser system for lidar probing of the composition of the atmosphere [in Russian] // Opticheskii Zhurnal. 2017. V. 84. № 6. P. 58–65.
G. G. Matvienko, O. A. Romanovskiĭ, S. A. Sadovnikov, A. Ya. Sukhanov, O. V. Kharchenko, and S. V. Yakovlev, "Study of the possibility of using a parametric-light-generator-based laser system for lidar probing of the composition of the atmosphere," Journal of Optical Technology. 84(6), 408-414 (2017). https://doi.org/10.1364/JOT.84.000408
This paper discusses the possibility of using a laser system with parametric light generation based on a nonlinear KTiOAsO4 crystal for lidar probing of the atmosphere in the 3–4 μm range. A combined technique has been developed for lidar measurements of the gaseous components of the atmosphere, using the differential-absorption method (DAM) and differential optical absorption spectroscopy (DOAS). The DAM–DOAS technique has been tested in a numerical experiment to estimate the possibilities of lidar probing of minor gaseous components of the atmosphere.
atmosphere, lidar probing, DAM, DOAS, gaseous components of atmosphere, nonlinear crystals
Acknowledgements:The research was supported by the Russian Foundation for Basic Research (RFBR) (16-45-700722 as part of the numerical modeling of lidar measurements of the MGCs of the atmosphere); Russian Federation for the Support of Young Russian Scientists (MK-1367.2017.5 as part of the development of a technique for the planning and carrying out of lidar DAM–DOAS measurements); Russian Federation for the Support of Outstanding Scientific Schools (NSh-8199.2016.5).
OCIS codes: 010.0280, 010.1280, 010.3640
References:1. B. I. Vasil’ev and U. M. Mannun, “IR differential-absorption lidars for ecological monitoring of the environment,” Quantum Electron. 36(9), 801–820 (2006) [Kvant. Elektron. (Moscow) 36(9), 801–820 (2006)].
2. V. Mitev, S. Babichenko, J. Bennes, R. Borelli, A. Dolfi-Bouteyre, L. Fiorani, L. Hespel, T. Huet, A. Palucci, M. Pistilli, A. Puiu, O. Rebane, and I. Sobolev, “Mid-IR DIAL for high-resolution mapping of explosive precursors,” Proc. SPIE 8894, 889401 (2013).
3. J. A. Sunesson, A. Apituley, and D. P. J. Swart, “Differential absorption lidar system for routine monitoring of tropospheric ozone,” Appl. Opt. 33(30), 7045–7058 (1994).
4. E. V. Browell, “Differential absorption lidar sensing of ozone,” Proc. IEEE 77(3), 419–432 (1989).
5. T. J. McGee, M. Gross, U. N. Singh, J. J. Butler, and P. E. Kimvilakani, “Improved stratospheric ozone lidar,” Opt. Eng. 34(5), 1421–1430 (1995).
6. V. D. Burlakov, S. I. Dolgiı˘, A. A. Nevzorov, A. V. Nevzorov, O. A. Romanovskiı˘, and O. V. Kharchenko, “Lidar probing of ozone in the upper troposphere–lower stratosphere: technique and results of measurements,” Izv. Tomskogo Politekh. Univ. 326(9), 124–132 (2015).
7. N. S. Higdon, E. V. Browell, P. Ponsardin, B. E. Grossmann, C. F. Butler, T. H. Chyba, M. Neale Mayo, R. J. Allen, A. W. Heuser, W. B. Grant, S. Ismail, S. D. Mayor, and A. F. Carter, “Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols,” Appl. Opt. 33(27), 6422–6438 (1994).
8. R. Toriumi, H. Tai, and N. Takechi, “Tunable solid-state blue laser differential absorption lidar system for NO 2 monitoring,” Opt. Eng. 35(8), 2371–2375 (1996).
9. O. V. Kharchenko, “Technique of planning and carrying out lidar measurements of the profiles of the meteorological parameters of the atmosphere,” Opt. Atm. Okeana 25(6), 523–528 (2012).
10. G. G. Matvienko, O. A. Romanovskiı˘, O. V. Kharchenko, and S. V. Yakovlev, “Results of modeling lidar measurements of the profiles of the meteorological parameters by means of an overtone CO-laser,” Opt. Atm. Okeana 27(2), 123–129 (2014).
11. O. A. Romanovskiı˘, O. V. Kharchenko, and S. V. Yakovlev, “Using multiwave IR lasers for lidar and track measurements of meteorological parameters of the atmosphere,” Izv. Vyssh. Uchebn. Zaved. Fiz. 57(10), 74–80 (2014).
12. S. M. Bobrovnikov, G. G. Matvienko, O. A. Romanovski, I. B. Serikov, and A. Ya. Sukhanov, Lidar Spectroscopic Gas Analysis of the Atmosphere (Izd. IOA SO RAN, Tomsk, 2014).
13. U. Platt, D. Perner, and H. W. Patz, “Simultaneous measurement of atmospheric CH 2 O, O 3 and NO 2 by differential optical absorption,” J. Geophys. Res. 84(C10), 6329–6335 (1979).
14. U. Platt, “Air monitoring by spectroscopic techniques,” Chem. Anal. Ser. 127, 27–84 (1994).
15. U. Platt and J. Stutz, Differential Optical Absorption Spectroscopy (New York, Springer-Verlag, 2008).
16. M. Douard, R. Bacis, R. Rambaldi, A. Ross, J.-P. Wolf, G. Fabre, and R. Stringat, “Fourier-transform lidar,” Opt. Lett. 20(20), 2140–2143 (1995).
17. R. T. Kh. Kollis and P. B. Rassel, Laser Monitoring of the Atmosphere: Lidar Measurements of Aerosol Particles of Gases by Means of Elastic Backscattering and Differential Absorption (Mir, Moscow, 1979), pp. 91–180.
18. L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, C. D. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
19. V. E. Zuev and V. S. Komarov, Statistical Models of the Temperature and Gaseous Components of the Atmosphere (Gidrometeoizdat, Leningrad, 1986).
20. G. M. Krekov and R. F. Rakhimov, Optical-Radar Model of the Continental Aerosol (Nauka, Novosibirsk, 1982).
21. R. A. McClatchey, R. W. Fenn, and J. E. A. Selby, “Optical properties of atmosphere,” Report AFCRL-71-0297, Bedford, Massachusetts, 1971.