УДК: 535.34
Measurement of the concentration of water vapor in a glow discharge plasma
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Лагунов В.В., Николаев И.В., Очкин В.Н., Цхай С.Н. Измерение концентрации водяных паров в плазме тлеющего разряда // Оптический журнал. 2017. Т. 84. № 6. С. 66–70.
Lagunov V.V., Nikolaev I.V., Ochkin V.N., Tskhai S.N. Measurement of the concentration of water vapor in a glow discharge plasma [in Russian] // Opticheskii Zhurnal. 2017. V. 84. № 6. P. 66–70.
V. V. Lagunov, I. V. Nikolaev, V. N. Ochkin, and S. N. Tskhaĭ, "Measurement of the concentration of water vapor in a glow discharge plasma," Journal of Optical Technology. 84(6), 415-418 (2017). https://doi.org/10.1364/JOT.84.000415
The absorption of water molecules in glow discharge plasma in moist inert gases with reduced pressure is studied by diode laser spectroscopy. A non-axial scheme with an external resonator is used, which allows the determination of kinetic temperature from Doppler broadening in order to obtain the partition function of water molecules, required for estimating the concentration of particles under non-equilibrium conditions.
absorption spectroscopy, diode laser, external resonator, gas discharge
OCIS codes: 300.0300, 300.01030, 300.6260
References:1. M. A. Bolshov, Yu. A. Kuritsyn, V. V. Liger, V. R. Mironenko, A. I. Nadezhdinskii, Ya. Ya. Ponurovskii, S. B. Leonov, and D. A. Yarantsev, “Measurement of transient gas flow parameters by diode laser absorption spectroscopy,” Quantum Electron. 45(4), 377–384 (2015).
2. A. B. Antipenkov, O. N. Afonin, V. N. Ochkin, S. Yu. Savinov, and S. N. Tskhai, “Experimental verification of the method for detection of water microleakages in plasma vacuum chambers by using the hydroxyl spectrum,” Plasma Phys. Rep. 38(3), 197–201 (2012).
3. É. É. Shpil’raı˘n, S. P. Malyshenko, and G. G. Kuleshov, Introduction to Hydrogen Energy Technology, V. A. Legasov, ed. (Energoatomizdat, Moscow, 1984).
4. D. Levko, A. Shuaibov, I. Shevera, R. Gritzak, and A. Tsymbaliuk, “Use of a low pressure helium/water vapor discharge as a mercury-free source of ultraviolet emission,” J. Appl. Phys. 116(11), 113303 (2014).
5. A. V. Bernatskiy, V. N. Ochkin, O. N. Afonin, and A. B. Antipenkov, “Measurements of the number density of water molecules in plasma by using a combined spectral–probe method,” Plasma Phys. Rep. 41(9), 705–714 (2015).
6. A. V. Bernatskiy, V. N. Ochkin, and I. V. Kochetov, “Multispectral actinometry of water and water derivate molecules in moist inert gas discharge plasmas,” J. Phys. D 49(39), 395204 (2016).
7. A. V. Bernatskiy, V. V. Lagunov, V. N. Ochkin, and S. N. Tskhai, “Study of water molecule decomposition in plasma by diode laser spectroscopy and optical actinometry methods,” Laser Phys. Lett. 13(7), 075702 (2016).
8. I. V. Nikolaev, V. N. Ochkin, G. S. Peters, M. V. Spiridonov, and S. N. Tskhai, “Recording weak absorption spectra by the phase-shift method with deep amplitude and frequency modulation using a diode laser and a high Q cavity,” Laser Phys. 23(11), 035701 (2013).
9. A. O’Keefe, “Integrated cavity output analysis of ultra-weak absorption,” Chem. Phys. Lett. 293(5), 331–336 (1998).
10. J. B. Paul, L. Lapson, and J. G. Anderson, “Ultrasensitive absorption spectroscopy with a high-finesse optical cavity and off-axis alignment,” Appl. Opt. 40(27), 4904–4910 (2001).
11. D. S. Baer, J. B. Paul, M. Gupta, and A. O’Keefe, “Sensitive absorption measurements in the near-infrared region using off-axis integrated-cavity-output spectroscopy,” Appl. Phys. B 75(2), 261–265 (2002).
12. V. N. Ochkin, Spectroscopy of Low-Temperature Plasma (Fizmatlit, Moscow, 2010).
13. P. Werle, R. Muecke, and F. Slemr, “The limits of signal averaging in atmospheric trace gas monitoring by tunable diode-laser absorption spectroscopy,” Appl. Phys. B 57(2), 131–139 (1993).