ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 535.342, 539.231

Optical properties and photoinduced aggregation of cyanine dyes on silver island films

For Russian citation (Opticheskii Zhurnal):

Набиуллина Р.Д., Старовойтов А.А., Торопов Н.А. Оптические свойства и фотоиндуцированная агрегация цианиновых красителей на островковых пленках серебра // Оптический журнал. 2017. Т. 84. № 7. С. 30–36.

 

Nabiullina R.D., Starovoytov A.A., Toropov N.A. Optical properties and photoinduced aggregation of cyanine dyes on silver island films [in Russian] // Opticheskii Zhurnal. 2017. V. 84. № 7. P. 30–36.

For citation (Journal of Optical Technology):

R. D. Nabiullina, A. A. Starovoĭtov, and N. A. Toropov, "Optical properties and photoinduced aggregation of cyanine dyes on silver island films," Journal of Optical Technology. 84(7), 453-458 (2017). https://doi.org/10.1364/JOT.84.000453

Abstract:

The optical properties and photoinduced modification of hybrid nanostructures, which are silver island films coated with a layer of cyanine dye, were studied. Experiments were conducted on three dye homologs and films differing in the equivalent thickness of the deposited silver. It was shown that the absorption of a hybrid film is not the sum of the absorption of the molecular layer and the plasmon absorption of the silver. The near fields of nanoparticles (NPs) that form island films increase the absorption of organic molecules, with the greatest increase observed in the band of J-aggregates. The influence of the near fields can be reduced by distancing the molecules from the NPs using an insulating polymer layer. In the presence of silver NPs, the photoinduced modification of the component composition of the layers of the dyes occurs at far lower energy densities. Resonant nanosecond laser pulses lead to the aggregation of molecules in hybrid films.

Keywords:

nanoparticle, thin film, plasmon, J-aggregate, exciton, laser modification, self-organization

OCIS codes: 300.6360, 310.6860

References:

1. J. Zhao, L. Jensen, J. Sung, S. Zou, G. C. Schatz, and R. P. Van Duyne, “Interaction of plasmon and molecular resonances for rhodamine 6G adsorbed on silver nanoparticles,” J. Am. Chem. Soc. 129, 7647–7656 (2007).
2. K. L. Kelly, E. Coronado, L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
3. A. Slistan-Grijalva, R. Herrera-Urbina, J. F. Rivas-Silva, M. Avalos-Borja, F. F. Castillon-Barraza, and A. Posada-Amarillas, “Classical theoretical characterization of the surface plasmon absorption band for silver spherical nanoparticles suspended in water and ethylene glycol,” Physica E 27, 104–112 (2005).
4. A.-I. Henry, J. M. Bingham, E. Ringe, L. D. Marks, G. C. Schatz, and R. P. Van Duyne, “Correlated structure and optical property studies of plasmonic nanoparticles,” J. Phys. Chem. C 115, 9291–9305 (2011).
5. X. Wang, F. He, X. Zhu, F. Tang, and L. Li, “Hybrid silver nanoparticle/conjugated polyelectrolyte nanocomposites exhibiting controllable metal-enhanced fluorescence,” Sci. Rep. 4, 4406 (2014).
6. W. Wu, L. Liu, Z. Dai, J. Liu, S. Yang, L. Zhou, X. Xiao, C. Jiang, and V. A. Roy, “Low-cost, disposable, flexible and highly reproducible screen printed SERS substrates for the detection of various chemicals,” Sci. Rep. 5, 10208 (2015).
7. K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93, 121904 (2008).
8. W. Shi and Z. Ma, “Amperometric glucose biosensor based on a triangular silver nanoprisms/chitosan composite film as immobilization matrix,” Biosens. Bioelectron. 26, 1098–1103 (2010).
9. H.-L. Huang, C. F. Chou, S. H. Shiao, Y.-C. Liu, J.-J. Huang, S. U. Jen, and H.-P. Chiang, “Surface plasmon-enhanced photoluminescence of DCJTB by using silver nanoparticle arrays,” Opt. Express 21, A901–A908 (2013).
10. K. Saito, “Quenching of excited J aggregates on metals by surface plasmon excitations,” J. Phys. Chem. B 103(31), 6579–6583 (1999).
11. A. Kamalieva, N. Toropov, I. Reznik, and T. Vartanyan, “Plasmon-assisted aggregation and spectral modification of the layered rhodamine 6G molecules,” Opt. Quantum Electron. 48(12), 562 (2016).
12. N. A. Toropov, A. A. Starovoytov, E. N. Kaliteevskaya, V. P. Krutyakova, T. A. Vartanyan, and N. B. Leonov, “Photoinduced modification of component composition of molecular layers with silver nanoparticles,” Proc. SPIE 9065, 90650W (2013).
13. N. A. Toropov, P. S. Parfenov, and T. A. Vartanyan, “Aggregation of cyanine dye molecules in the near fields of plasmonic nanoparticles excited by pulsed laser irradiation,” J. Phys. Chem. C 118(31), 18010–18014 (2014).
14. N. A. Toropov, E. N. Kaliteevskaya, N. B. Leonov, and T. A. Vartanyan, “Mutual modification of plasmon resonances of silver nanoparticles and absorption properties of molecular layers of polymethine dyes on a sapphire surface,” Opt. Spectrosc. 113(6), 616–620 (2012) [Opt. Spektrosk. 113(6), 684–689 (2012)].
15. C. B. Walsh and E. I. Franses, “Ultrathin PMMA films spin-coated from toluene solutions,” Thin Solid Films 429, 71–76 (2003).
16. E. N. Kaliteevskaya, V. P. Krutyakova, T. K. Razumova, and A. A. Starovoı˘tov, “Influence of the structure of a cyanine dye molecule on the component composition of molecular layers,” Opt. Spectrosc. 120(3), 482–491 (2016) [Opt. Spektrosk. 120(3), 163–173 (2016)].
17. A. A. Starovoı˘tov, T. K. Razumova, E. N. Kaliteevskaya, and V. P. Krutyakova, “Photostimulated modification of the optical properties and structure of a molecular layer of a polymethine dye,” J. Opt. Technol. 81(5), 289–293 (2014). [Opt. Zh. 81(5), 80–86 (2014)].

18. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
19. K.-C. Lee, S.-J. Lin, C.-H. Lin, C.-S. Tsai, and Y.-J. Lu, “Size effect of Ag nanoparticles on surface plasmon resonance,” Surf. Coat. Technol. 202(22–23), 5339–5342 (2008).
20. T. J. Antosiewicz, S. P. Apell, and T. Shegai, “Plasmon–exciton interactions in a core–shell geometry: from enhanced absorption to strong coupling,” ACS Photon. 1(5), 454–463 (2014).
21. N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon–exciton coupling in nanoshell–J-aggregate complexes,” Nano Lett. 8(10), 3481–3487 (2008).
22. L. P. Amosova, N. B. Leonov, and N. A. Toropov, “An anomalous change in the frequency of plasmon resonances of metallic island films upon contact with some polar organic media,” Opt. Spectrosc. 121(6), 837–841 (2016) [Opt. Spektrosk. 121(6), 901–906 (2016)].