ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 535.372, 538.915

Absorption and photoluminescence of epitaxial quantum dots in the near field of silver nanostructures

For Russian citation (Opticheskii Zhurnal):

Торопов Н.А., Гладских И.А., Гладских П.В., Косарев А.Н., Преображенский В.В., Путято М.А., Семягин Б.Р., Чалдышев В.В., Вартанян Т.А. Поглощение и фотолюминесценция эпитаксиальных квантовых точек в ближнем поле серебряных наноструктур // Оптический журнал. 2017. Т. 84. № 7. С. 37–40.

 

Toropov N.A., Gladskikh I.A., Gladskikh P.V., Kosarev A.N., Preobrazhenskiy V.V., Putyato M.A., Semyagin B.R., Chaldyshev V.V., Vartanyan T.A. Absorption and photoluminescence of epitaxial quantum dots in the near field of silver nanostructures [in Russian] // Opticheskii Zhurnal. 2017. V. 84. № 7. P. 37–40.

For citation (Journal of Optical Technology):

N. A. Toropov, I. A. Gladskikh, P. V. Gladskikh, A. N. Kosarev, V. V. Preobrazhenskiĭ, M. A. Putyato, B. R. Semyagin, V. V. Chaldyshev, and T. A. Vartanyan, "Absorption and photoluminescence of epitaxial quantum dots in the near field of silver nanostructures," Journal of Optical Technology. 84(7), 459-461 (2017). https://doi.org/10.1364/JOT.84.000459

Abstract:

The optical properties of a hybrid material consisting of semiconductor quantum dots and metallic nanoparticles are investigated. A semiconductor structure containing a stack of five layers of indium arsenide quantum dots near the surface of gallium arsenide is fabricated using molecular beam epitaxy. The surface of the structure is covered by a layer of silver nanoparticles, whose plasmon resonances are close to exciton transitions in quantum dots. The redshift of the extinction spectrum of the quantum dots and enhancement of photoluminescence are observed, indicating the interaction between the resonances in the components of the hybrid system formed here.

Keywords:

metallic nanoparticles, epitaxial quantum dot, localized surface plasmons, absorption, luminescence

Acknowledgements:

The research was supported by the Russian Foundation for Basic Research (RFBR) (16-02-00932); Grant Council of the President of the Russian Federation (MK 228.2017.2); Government of the Russian Federation (074-U01). The authors express special gratitude to Mikhail Baranov (ITMO University) for his assistance with obtaining micrographs.

OCIS codes: 310.6628, 260.2510, 300.6470

References:

1. N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell–J-aggregate complexes,” Nano Lett. 8(10), 3481–3487 (2008).
2. A. Goker, “Strongly correlated plexcitonics: evolution of the Fano resonance in the presence of Kondo correlations,” Phys. Chem. Chem. Phys. 17, 11569–11576 (2015).
3. A. Manjavacas, F. J. Garcia de Abajo, and P. Nordlander, “Quantum plexcitonics: strongly interacting plasmons and excitons,” Nano Lett. 11(6), 2318–2323 (2011).
4. V. Dillu, P. Rani, and R. K. Sinha, “Field enhanced plexitonic coupling between InAs quantum dot and silver film: highly sensitive plasmonic composite,” Proc. SPIE 9163, 91630W (2014).
5. W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear Fano effect,” Phys. Rev. Lett. 97(14), 146804 (2006).
6. M. T. Cheng, S. D. Liu, H. J. Zhou, Z. H. Hao, and Q. Q. Wang, “Coherent exciton-plasmon interaction in the hybrid semiconductor quantum dot and metal nanoparticle complex,” Opt. Lett. 32, 2125–2127 (2007).
7. S. G. Kosionis, A. F. Terzis, S. M. Sadeghi, and E. Paspalakis, “Optical response of a quantum dot-metal nanoparticle hybrid interacting with a weak probe field,” J. Phys.: Condens. Matter 25, 045304 (2013).
8. Z. Lu and K. D. Zhu, “Slow light in an artificial hybrid nanocrystal complex,” J. Phys. B 42, 015502 (2009).
9. R. D. Artuso and G. W. Bryant, “Optical response of strongly coupled quantum dot-metal nanoparticle systems: double peaked Fano structure and bistability,” Nano Lett. 8, 2106–2111 (2008).
10. A. Hatef, S. M. Sadeghi, E. Boulais, and M. Meunier, “Quantum dot-metallic nanorod sensors via exciton-plasmon interaction,” Nanotechnology 24, 015502 (2013).
11. H.-J. Chen and K.-D. Zhu, “Surface plasmon enhanced sensitive detection for possible signature of Majorana fermions via a hybrid semiconductor quantum dot-metal nanoparticle system,” Sci. Rep. 5, 13518 (2015).
12. W.-X. Yang, A.-X. Chen, Z. W. Huang, and R.-K. Lee, “Ultrafast optical switching in quantum dot-metallic nanoparticle hybrid systems,” Opt. Express 23, 13032–13040 (2015).
13. J. J. Yang, M. Perrin, and P. Lalanne, “Analytical formalism for the interaction of two-level quantum systems with metal nanoresonators,” Phys. Rev. X 5, 021008 (2015).
14. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
15. P. V. Gladskikh, I. A. Gladskikh, N. A. Toropov, M. A. Baranov, and T. A. Vartanyan, “Correlation between structural, optical, and electrical properties of self-assembled plasmonic nanostructures on the GaAs surface,” J. Nanopart. Res. 17, 424 (2015).