УДК: 535.42
Features of light scattering by particles with a high absorption coefficient
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Трибельский М.И. Особенности рассеяния света частицами с большим коэффициентом преломления // Оптический журнал. 2017. Т. 84. № 7. С. 4–12.
Tribelskiy M.I. Features of light scattering by particles with a high absorption coefficient [in Russian] // Opticheskii Zhurnal. 2017. V. 84. № 7. P. 4–12.
M. I. Tribel’skiĭ, "Features of light scattering by particles with a high absorption coefficient," Journal of Optical Technology. 84(7), 431-438 (2017). https://doi.org/10.1364/JOT.84.000431
This paper presents a brief review of resonance scattering of light by subwavelength particles with a large refraction index and small dissipation. It shows that each partial mode can be represented outside the particles as a superposition of infinite cascades of Fano resonances. The nature of these resonances is explained. Simple relationships are given that directly express the parameters of an asymmetric Fano line in terms of the particle size, the wave number of the incident radiation, and the complex refractive index. The resonances are characterized inside the particles by a traditional Lorentzian line shape; however, the amplitude of the resonances can be very large, while resonances of various orders can substantially overlap. This creates conditions for giant (by orders of magnitude) amplification of the field inside such a particle, as well as for controlling the contrast of this field. The indicated properties open up new possibilities for creating nonlinear heterogeneous nanostructures and other metamaterials.
light scattering, Mie resonance, nanoparticles
Acknowledgements:The author is grateful to Yuri Galperin for critical reading of the manuscript and valuable comments.
OCIS codes: 290.4020, 290.5825, 160.4236
References:1. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (AP, New York, 1969).
2. G. Mie, “Beiträge zur Optik trüber Medien speziell kolloidaler Goldlösungen (Contributions to the optics of diffuse media, especially colloid metal solutions),” Ann. Phys. (Leipzig) 330, 377–445 (1908).
3. M. I. Tribel’skiı˘, “Resonance scattering of light by small particles,” JETP 59 (2), 534–536 (1984) [Zh. Eksp. Teor. Fiz. 86, 915–919 (1984)].
4. M. I. Tribelsky and B. S. Luk’yanchuk, “Anomalous light scattering by small particles,” Phys. Rev. Lett. 97, 263902 (2006).
5. B. S. Luk’yanchuk and M. I. Tribel’skiı˘, “Anomalous scattering of light by small particles and reverse hierarchy of optical resonances,” in Recollections of M. N. Libenson, D. L. Raskin, E. B. Yakovlev, and G. D. Shandybina, eds. (ITMO, St. Petersburg, 2005), pp. 1011–1017.
6. B. S. Luk’yanchuk, M. I. Tribel’skiı˘, and V. V. Ternovskiı˘, “Light scattering at nanoparticles close to plasmon resonance frequencies,” J. Opt. Technol. 73(6), 371–377 (2006) [Opt. Zh. 73(6), 7–14 (2006)].
7. B. S. Lukyanchuk, Z. B. Wang, M. I. Tribelsky, M. H. Hong, and T. C. Chong, “Peculiarities of light scattering by nanoparticles and nanowires near plasmon resonance frequencies,” J. Phys. 59, 234–239 (2007).
8. B. S. Lukyanchuk, M. I. Tribelsky, V. Ternovsky, Z. B. Wang, M. H. Hong, L. P. Shi, and T. C. Chong, “Peculiarities of light scattering by nanoparticles and nanowires near plasmon resonance frequencies in weakly dissipating materials,” J. Opt. A 9, S294–S300 (2007).
9. B. S. Lukyanchuk, T. C. Chong, L. P. Shi, M. I. Tribelsky, Z. B. Wang, L. Li, C.-W. Qui, C. J. R. Sheppard, and J. H. Wu, “What we expect from weakly dissipating materials at the range of plasmon resonance frequencies,” in IEEE PhotonicsGlobal@Singapore (IPGS) (2008), pp. 187–190.
10. U. Fano, “Sullo spettro di assorbimento dei gas nobili presso il limite dello spettro d’arco,” Nuovo Cimento 12, 154–161 (1935).
11. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
12. R. Wood, “On the remarkable case of uneven distribution of light in a diffraction grating spectrum,” Proc. R. Soc. London A 18, 269–275 (1902).
13. A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82, 2257 (2010).
14. B. S. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and T. C. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
15. A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. S. Lukyanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), 2472 (2016).
16. M. I. Tribelsky, S. Flach, A. E. Miroshnichenko, A. Gorbach, and Y. S. Kivshar, “Light scattering by a finite obstacle and Fano resonances,” Phys. Rev. Lett. 100, 043903 (2008).
17. M. I. Tribelsky, J.-M. Geffrin, A. Litman, C. Eyraud, and F. Moreno, “Small dielectric spheres with high refractive index as new multifunctional elements for optical devices,” Sci. Rep. 5, 12288 (2015).
18. M. Polyanskiy, “Refractive index database,” http://refractiveindex.info/.
19. M. V. Rybin, K. B. Samusev, I. S. Sinev, G. Semouchkin, E. Semouchkina, Y. S. Kivshar, and M. F. Limonov, “Mie scattering as a cascade of Fano resonances,” Opt. Express 21, 30107–30113 (2013).
20. M. V. Rybin, D. S. Filonov, P. A. Belov, Y. S. Kivshar, and M. F. Limonov, “Switching from visibility to invisibility via Fano resonances: theory and experiment,” Sci. Rep. 5, 8774 (2015).
21. M. B. Mensk, “Dissipation and decoherence in quantum systems,” Usp. Fiz. Nauk 173(11), 1199–1219 (2003) [Phys.–Usp. 46(11), 1163–1182 (2003)].
22. M. I. Tribelsky, A. E. Miroshnichenko, and Y. S. Kivshar, “Unconventional Fano resonances in light scattering by small particles,” Europhys. Lett. 97, 44005 (2012).
23. M. I. Tribelsky and A. E. Miroshnichenko, “Giant in-particle field concentration and Fano resonances at light scattering by high-refractive index particles,” Phys. Rev. A 93, 053837 (2016).
24. M. I. Tribelsky, J.-M. Geffrin, A. Litman, C. Eyraud, and F. Moreno, “Directional Fano resonances at light scattering by a high refractive index dielectric sphere,” Phys. Rev. B 94, 121110 (2016).
25. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Nauka, Moscow, 1982; Pergamon Press, Oxford, 1960).
26. M. Tribelsky, “Peculiarities of light scattering by particles with high refractive index,” in Program Int. Symp. FLAMN-16, St. Petersburg, Russia (2016), p. 14.
27. P. Kapitanova, V. Ternovski, A. Miroshnichenko, N. Pavlov, P. Belov, Y. Kivshar, and M. Tribelsky, “Giant field enhancement in high-index dielectric subwavelength particles,” Sci. Rep. 7, 731 (2017).