УДК: 618.7.03, 628.58, 57.083
Transparent bactericidal TiO2-ZnO and TiO2-MgO coatings on glass
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Волынкин В.М., Евстропьев С.К., Караваева А.В., Дукельский К,В., Киселев В.М., Быков М.В., Евстропьев К.С. Прозрачные бактерицидные двухкомпонентные оксидные покрытия на основе TiO2-ZnO и TiO2-MgO на стеклах // Оптический журнал. 2017. Т. 84. № 7. С. 59–63.
Volynkin V.M., Evstropiev S.K., Karavaeva A.V., Dukelskiy K.V., Kiselev V.M., Bykov M.V., Evstropiev K.S. Transparent bactericidal TiO2-ZnO and TiO2-MgO coatings on glass [in Russian] // Opticheskii Zhurnal. 2017. V. 84. № 7. P. 59–63.
V. M. Volynkin, S. K. Evstrop’ev, A. V. Karavaeva, K. V. Dukel’skiĭ, V. M. Kiselev, M. V. Bykov, and K. S. Evstrop’ev, "Transparent bactericidal TiO2-ZnO and TiO2-MgO coatings on glass," Journal of Optical Technology. 84(7), 477-480 (2017). https://doi.org/10.1364/JOT.84.000477
The results of the development and investigation of the properties of transparent bactericidal two-component oxide coatings based on TiO2-ZnO and TiO2-MgO on glasses are presented. It is established that the coatings consist of oxide nanoparticles with uniform sizes (10–15 nm) that are characterized by high transparency in the visible region of the electromagnetic spectrum. It is shown that two-component oxide coatings exhibit better bactericidal properties compared to their single-component analogs.
transparent bactericidal coatings, singlet oxygen, oxide materials
OCIS codes: 160.0160; 310.0310; 160.2750; 160.4236
References:1. L. Huang, D. Q. Li, Y. J. Lin, M. Wei, D. G. Evans, and X. Duan, “Controllable preparation of nano-MgO and investigation of its bactericidal properties,” J. Inorg. Biochem. 99(5), 986 (2005).
2. S. K. Evstrop’ev, K. V. Dukel’skiı˘, M. N. Tolstoı˘, and M. A. Karpenko, “Bactericidal oxide coating and the method of its preparation,” Russian patent 2,395,548 (2008).
3. O. B. Koper, J. S. Klabunde, G. L. Marchin, K. J. Klabunde, P. Stoimenov, and L. Bohra, “Nano-scale powders and formulations with biocidal activity toward spores and vegetative cells of Bacillus species, viruses, and toxins,” Curr. Microbiol. 44, 49 (2002).
4. J. Sawai, H. Kojima, H. Igarashi, A. Hashimoto, S. Shoji, T. Sawaki, A. Hakoda, E. Kawada, T. Kokugan, and M. Shimizu, “Antibacterial characteristics of magnesium oxide powder,” World J. Microbiol. Biotechnol. 16(2), 187 (2000).
5. P. Basnet, G. K. Larsen, R. P. Jadeja, Y.-C. Hung, and Y. Zhao, “α-Fe 2 O 3 nanocolumns and nanorods fabricated by electron beam evaporation for visible light photocatalytic and antimicrobial applications,” ACS Appl. Mater. Interfaces 5(6), 2085 (2013).
6. M. Mala, K. Ravichandran, S. Pandiarajan, N. Srinivasan, B. Ravikumar, K. C. P. Siriya, K. Swaminathan, and T. Arun, “Formation of hexagonal plate shaped ZnO microparticles—a study on antibacterial and magnetic properties,” Ceram. Int. 42(6), 7336 (2016).
7. J. Zhang, S. Li, L. Chen, Y. Pan, and S. Yang, “The progress of TiO 2 photocatalyst coating,” IOSR J. Eng. 2(8), 50 (2012).
8. M. P. Fedotova, “High-dispersed bicomponent photocatalysts based on titanium dioxide,” Abstract for the degree of candidate of chemical sciences, Tomsk State University, Tomsk (2009).
9. H. S. Jung, J. K. Lee, M. Nastasi, J. R. Kim, S. W. Lee, J. Y. Kim, J. S. Park, K. S. Hong, and H. Shin, “Enhancing photocatalytic activity by using TiO 2 -MgO core-shell-structured nanoparticles,” Appl. Phys. Lett. 88, 13107 (2006).
10. S. T. Khan, J. Ahmad, M. Ahamed, J. Musarrat, and A. A. Al-Khedhairy, “Zinc oxide and titanium dioxide nanoparticles induce oxidative stress inhibit growth, and attenuate biofilm formation activity of Streptococcus mitis,” J. Biol. Inorg. Chem. 21, 295 (2016).
11. J. Jin, W. Liu, W. Zhang, Q. Chen, Y. Yuan, L. Yang, and Q. Wang, “Nano-ZnO/ZnO-HAPw prepared via sol-gel method and antibacterial activities of inorganic agents on six bacteria associated with oral infections,” J. Nanopart. Res. 16, 2658 (2014).
12. N. Tran, A. Mir, D. Mallik, A. Sinha, S. Nayar, and T. J. Webster, “Bactericidal effect of iron oxide nanoparticles on Staphylococcus aureus,” Int. J. Nanomed. 5, 277 (2010).
13. G. Applerot, J. Lellouche, N. Perkas, Y. Nitzan, A. Gedanken, and E. Banin, “ZnO nanoparticle-coated surfaces inhibit bacterial biofilm formation and increase antibiotic susceptibility,” RSC Adv. 2(6), 2314 (2012).
14. Z. Huang, X. Zheng, D. Yan, G. Yin, X. Liao, Y. Kang, Y. Yao, D. Huang, and B. Hao, “Toxicological effect of ZnO nanoparticles based on bacteria,” Langmuir 24(8), 4140 (2008).
15. V. Jaškova, L. Hochmannova, and J. Vytřasová, “TiO 2 and ZnO nanoparticles in photocatalytic and hygienic coatings,” Int. J. Photoenergy 2013, 795060 (2013).
16. K. V. Dukel’skiı˘ and S. K. Evstrop’ev, “Forming protective nanoscale coatings based on Al 2 O 3 (Al 2 O 3 -AlF 3 ) on a glass surface,” J. Opt. Technol. 78(2), 137 (2011) [Opt. Zh. 78(2), 71–81 (2011)].
17. Determination of the Sensitivity of Microorganisms to Antibacterial Drugs: Guidelines (Federal Center for State Sanitary and Epidemiological Supervision of the Russian Ministry of Health, Moscow, 2004).
18. V. M. Kiselev, I. M. Kislyakov, and A. N. Burchinov, “Generation of singlet oxygen on the surface of metal oxides,” Opt. Spectrosc. 120(4), 520 (2016) [Opt. Spektrosk. 78(2), 15–25 (2011)].