УДК: 678.742(2+3), 535.36
Optical transmission of porous polyolefin films in immersion media
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Ельяшевич Г.К., Курындин И.С., Розова Е.Ю. Светопропускание пористых полиолефиновых пленок в иммерсионных средах // Оптический журнал. 2017. Т. 84. № 7. С. 64–69.
Eliyashevich G.K., Kuryndin I.S., Rozova E.Yu. Optical transmission of porous polyolefin films in immersion media [in Russian] // Opticheskii Zhurnal. 2017. V. 84. № 7. P. 64–69.
G. K. El’yashevich, I. S. Kuryndin, and E. Yu. Rozova, "Optical transmission of porous polyolefin films in immersion media," Journal of Optical Technology. 84(7), 481-485 (2017). https://doi.org/10.1364/JOT.84.000481
The optical transmission of oriented porous polyethylene and polypropylene films obtained by the extrusion of a polymer melt with subsequent annealing and uniaxial stretching were studied. The transmission of light by porous films in immersion media such as organic liquids was measured. It is shown that the transmission of light is affected by the closeness of the refractive indices of the polymer and the liquid, as well as by the wettability of the film surface by the liquid. The effect of the degree of orientation and composition of the films on their light transmittance observed when using polar and nonpolar immersion liquids was analyzed.
optical transmission, porous films, polyethylene, polypropylene, refractive indice, wettability, orientation
Acknowledgements:The research was supported by the Russian Foundation for Basic Research (RFBR) (16-03-00265).
OCIS codes: 160.0160, 160.5470, 160.4760
References:1. V. N. Serova, Optical and Other Materials Based on Transparent Polymers (KGTU, Kazan, 2010).
2. T. A. Speranskaya and L. I. Tarutina, Optical Properties of Polymers (Khimiya, Leningrad, 1976).
3. N. E. Claytor and R. N. Claytor, “Polymer imaging optics for the thermal infrared,” Proc. SPIE 5406, 107–113 (2004).
4. G. E. Jabbour and N. S. Sariciftci, Electronic, Optical and Optoelectronic Polymers and Oligomers: MRS Proceedings (Cambridge University, New York, 2014).
5. S. Cho, J. Kwag, S. Jeong, Y. Baek, and S. Kim, “Highly fluorescent and stable quantum dot-polymer-layered double hydroxide composites,” Chem. Mater. 25, 1071–1077 (2013).
6. Y. A. Gromova, A. O. Orlova, V. G. Maslov, A. V. Fedorov, and A. V. Baranov, “Fluorescence energy transfer in quantum dot/azo dye complexes in polymer track membranes,” Nanoscale Res. Lett. 8, 452–457 (2013).
7. K. Ichimura, “Photoregulation of liquid crystal alignment by photochromic molecules and polymeric thin films,” in Polymers as Electrooptical and Photooptical Active Media (Springer-Verlag, Berlin, 1996), pp. 138–172.
8. L. M. Blinov and V. G. Chigrinov, Electrooptic Effects in Liquid Crystal Materials (Springer-Verlag, New York, 1993).
9. K. Muellen and U. Schere, Organic Light Emitting Devices: Synthesis, Properties and Applications (Wiley-VCH, Weinheim, 2005).
10. G. M. Zharkova and A. S. Sonin, Liquid Crystal Composites (Nauka, Novosibirsk, 1994).
11. V. P. Shibaev, A. Yu. Bobrovskiı˘, and G. K. El’yashevich, “Liquid-crystal and photochromic composites based on porous polyethylene films,” Zhidk. Krist. Ikh Prakt. Ispol’z. 4(18), 107–117 (2006).
12. A. Bobrovsky, V. Shibaev, and G. Elyashevitch, “Photopatternable fluorescent polymer composites based on stretched porous polyethylene and photopolymerizable liquid crystal mixture,” J. Mater. Chem. 18, 691–695 (2008).
13. A. Bobrovsky, V. Shibaev, G. Elyashevich, E. Rosova, A. Shimkin, V. Shirinyan, and K.-L. Cheng, “Photochromic composites based on porous stretched polyethylene filled by nematic liquid crystal mixtures,” Polym. Adv. Technol. 21, 100–105 (2010).
14. A. Bobrovsky, V. Shibaev, S. Abramchuk, G. Elyashevitch, P. Samokhvalov, V. Oleinikov, and K. Mochalov, “Quantum dot-polymer composites based on nanoporous polypropylene films with different draw ratios,” Eur. Polym. J. 82, 93–101 (2016).
15. G. K. El’yashevich, E. Yu. Rozova, and E. A. Karpov, “Microporous polyethylene film and the method of its production,” Russian patent 2,140,936 (1997).
16. M. Raab, J. Scudla, A. G. Kozlov, V. K. Lavrentyev, and G. K. Elyashevich, “Structure development in oriented polyethylene films and microporous membranes as monitored by sound propagation,” J. Appl. Polym. Sci. 80(2), 214–222 (2001).
17. G. K. El’yashevich, I. S. Kuryndin, V. K. Lavrentyev, A. Yu. Bobrovskiı˘, and V. Bukošek, “Porous structure, permeability and mechanical properties of microporous films from polyolefins,” Fiz. Tverd. Tela 54(9), 1787–1796 (2012).
18. I. S. Kuryndin, E. Yu. Rozova, V. Bukošek, and G. K. El’yashevich, “Effect of orientation extension on the structure and physicomechanical properties of porous polyethylene films,” Polym. Sci. A 52(12), 1311–1317 (2010) [Vysokomol. Soedin., Ser. A 52(12), 2123–2130 (2010)].
19. E. Pozhidaev, A. Bobrovsky, V. Shibaev, G. Elyashevich, and M. Minchenok, “Ferroelectric liquid crystal composites based on the porous stretched polyethylene films,” Liq. Cryst. 37(5), 517–525 (2010).