УДК: 620.3
Features of the terahertz spectra of iron oxide nanoparticles in a silicon dioxide shell and of iron oxide and hydroxide nanoparticles
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Афонин М.В., Балбекин Н.С., Гареев Г.З., Гареев К.Г., Горшков А.Н., Королев Д.В., Лучинин В.В., Смолянская О.А. Особенности терагерцовых спектров наночастиц оксида железа в оболочке из диоксида кремния и наночастиц оксида и гидроксида железа // Оптический журнал. 2017. Т. 84. № 8. С. 16–22.
Afonin M.V., Balbekin N.S., Gareev G.Z., Gareev K.G., Gorshkov A.N., Korolev D.V., Luchinin V.V., Smolyanskaya O.A. Features of the terahertz spectra of iron oxide nanoparticles in a silicon dioxide shell and of iron oxide and hydroxide nanoparticles [in Russian] // Opticheskii Zhurnal. 2017. V. 84. № 8. P. 16–22.
V. Afonin, N. S. Balbekin, G. Z. Gareev, K. G. Gareev, A. N. Gorshkov, D. V. Korolev, V. V. Luchinin, and O. A. Smolyanskaya, "Features of the terahertz spectra of iron oxide nanoparticles in a silicon dioxide shell and of iron oxide and hydroxide nanoparticles," Journal of Optical Technology. 84(8), 515-520 (2017). https://doi.org/10.1364/JOT.84.000515
New methods have been developed for noninvasive monitoring of pathological processes in a living organism by means of terahertz spectroscopy and visualization using contrast agents based on magnetic nanoparticles. The nanoparticles must possess good magnetic characteristics, must be nontoxic and stable against aggregation, and must exhibit chemical stability; therefore, they are enclosed in a biologically inert shell. This paper discusses the spectral features of iron oxide nanoparticles in a biologically inert shell consisting of silicon dioxide and nanoparticles of iron oxide and hydroxide in the terahertz frequency range. It is shown that the crystalline phase of iron oxide can be identified for both types of nanoparticles by means of terahertz spectroscopy.
terahertz spectroscopy, magnetic nanoparticles, silicon dioxide, magnetite, goethite
Acknowledgements:The research was supported by the Government of the Russian Federation (074-U01); Russian Foundation for Basic Research (RFBR) (16-32-60010). The studies of colloidal complexes of NPs by x-ray diffraction and vibrational magnetometry were carried out using the equipment of the “X-ray diffraction research methods” and “Innovation technologies of composite nanomaterials” resource centers of the St. Petersburg State University.
OCIS codes: 300.6495, 160.4236, 160.6060, 160.6030
References:1. É. K. Nepomnyashchaya, A. V. Cheremiskina, E. N. Velichko, E. T. Aksenov, and T. A. Bogomaz, “Studies of albumin using a combination of laser correlation spectroscopy and dielectric spectroscopy,” J. Opt. Technol. 83(5), 305–308 (2016) [Opt. Zh. 83(5), 50–54 (2016)].
2. É. K. Nepomnyashchaya, A. V. Cheremiskina, E. N. Velichko, E. T. Aksenov, and T. A. Bogomaz, “Use of laser correlation spectroscopy to investigate the parameters of biological suspensions,” J. Opt. Technol. 82(3), 162–165 (2015) [Opt. Zh. 82(3), 43–48 (2015)].
3. I. I. Shaganov and T. M. Perova, “Effect of diode–diode interactions on the characteristics of the absorption spectra of granular films and colloidal suspensions of gold and silver nanoparticles,” J. Opt. Technol. 82(4), 197–204 (2015) [Opt. Zh. 82(4), 3–13 (2015)].
4. D.-K. Lee, H. Kim, T. Kim, B. Cho, K. Lee, and J.-H. Son, “Characteristics of gadolinium oxide nanoparticles as contrast agents for terahertz imaging,” J. Infrared, Millimeter, Terahertz Waves 32, 506–512 (2011).
5. J. Y. Park, H. J. Choi, G.-E. Nam, K.-S. Cho, and J.-H. Son, “In vivo dual-modality terahertz magnetic-resonance imaging using superparamagnetic iron oxide nanoparticles as a dual contrast agent,” IEEE Trans. Terahertz Sci. Technol. 2, 93–98 (2012).
6. R. Zhang, L. Zhang, T. Wu, S. Zuo, R. Wang, C. Zhang, J. Zhang, and J. Fang, “Contrast-enhanced continuous-terahertz-wave imaging based on superparamagnetic iron oxide nanoparticles for biomedical applications,” Opt. Express 24(8), 7915–7921 (2016).
7. V. I. Al’myashev, K. G. Gareev, S. A. Ionin, V. S. Levitski, V. A. Moshnikov, and E. I. Terukov, “Investigation of the structure, elemental and phase compositions of Fe 3 O 4 -SiO 2 composite layers by scanning electron microscopy, X-ray spectroscopy, and thermal nitrogen desorption methods,” Phys. Solid State 56(11), 2155–2159 (2014) [Fiz. Tverd. Tela 56(11), 2086–2090 (2014)].
8. D. V. Korolev, M. M. Galagudza, I. S. Uskov, V. B. Ostashev, I. V. Aleksandrov, M. V. Afonin, and E. A. Umenushkina, “Basis for using magnetic nanoparticles for directed delivery of medicines to an ischemic skeletal muscle,” Biotekhnosfera 19(1), 2–6 (2012).
9. Yu. V. Bogachev, Ju. S. Chernenco, K. G. Gareev, I. E. Kononova, L. B. Matyushkin, V. A. Moshnikov, and S. S. Nalimova, “The study of aggregation processes in colloidal solutions of magnetite–silica nanoparticles by NMR relaxometry, AFM, and UV–Vis spectroscopy,” Appl. Magn. Reson. 45(3), 329–337 (2014).
10. P. V. Kharitonskii, K. G. Gareev, S. A. Ionin, V. A. Ryzhov, Yu. V. Bogachev, B. D. Klimenkov, I. E. Kononova, and V. A. Moshnikov, “Microstructure and magnetic state of Fe 3 O 4 -SiO 2 colloidal particles,” J. Magn. 20(3), 221–228 (2015).
11. P. Kharitonskii, K. Gareev, D. Korolev, and E. Sergienko, “Magnetic properties of Fe mO n -SiO 2 colloidal nanoparticles: theoretical and experimental aspects,” AIP Conf. Proc. 1748, 050009 (2016).
12. M. V. Afonin, N. V. Evreinova, D. V. Korolev, A. D. Kanarski, and M. M. Galagudza, “Study of the physical properties and biodegradation of magnetite nanoparticles in vitro,” Biotekhnosfera 38(2), 24–32 (2015).
13. A. Gurtler, C. Winnewisser, H. Helm, and P. U. Jepsen, “Terahertz pulse propagation in the near field and the far field,” J. Opt. Soc. Am A 17, 74–83 (2000).
14. S. Izumida, S. Ono, Z. Liu, H. Otake, and N. Sarukura, “Spectrum control of THz radiation from InAs in a magnetic field by duration and frequency chirp of the excitation pulses,” App. Phys. Lett. 75, 451–453 (1999).
15. D. M. Mittleman, J. Cunningham, M. C. Nuss, and M. Geva, “Noncontact semiconductor wafer characterization with the terahertz Hall effect,” Appl. Phys. Lett. 71, 16–18 (1997).
16. Y.-S. Lee, Principles of Terahertz Science and Technology (Springer Science & Business Media, New York, 2009), p. 93.
17. N. S. Balbekin, Y. V. Grachev, S. V. Smirnov, and V. G. Bespalov, “The versatile terahertz reflection and transmission spectrometer with the location of objects of researches in the horizontal plane,” J. Phys.: Conf. Ser. 584, 012010 (2015).
18. E. A. Strepitov, I. V. Prozheev, N. S. Balbekin, M. I. Sulatsky, M. K. Khodzitsky, O. A. Smolyanskaya, A. S. Trulioff, and M. K. Serebryakova, “Analysis of spectral characteristics of normal fibroblasts and fibroblasts cultured with cancer cells in terahertz frequency range,” in Proceedings of Progress in Electromagnetics Research Symposium, Guangzhou, China, 2014, p. 1707.
19. K. Johnson and E. Bell, “FIR optical properties of KCl and KBr,” Phys. Rev. 187, 1044–1052 (1969).
20. F. Brunner, A. Schneider, and P. Gunter, “A terahertz time-domain spectrometer for simultaneous transmission and reflection measurements at normal incidence,” Opt. Express 17, 20684–20693 (2009).
21. A. Woods, B. Brockhouse, R. Cowley, and W. Cochran, “Lattice dynamics of alkali halide crystals. II. Experimental studies of KBr and NaI,” Phys. Rev. 131, 1025–1029 (1963).
22. R. Kitamura, L. Pilon, and M. Jonasz, “Optical constants of silica glass from extreme UV to FIR at near room temperature,” Appl. Opt. 46, 8118–8133 (2007).
23. R. V. Mikhaylovskiy, E. Hendry, A. Secchi, J. H. Mentink, M. Eckstein, A. Wu, R. V. Pisarev, V. V. Kruglyak, M. I. Katsnelson, Th. Rasing, and A. V. Kimel, “Ultrafast optical modification of exchange interactions in iron oxides,” Nat. Commun. 6, 8190 (2015).
24. R. A. Cowley, “The lattice dynamics of an anharmonic crystal,” Adv. Phys. 12, 421–480 (1963).