ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 535-14, 535.51

Numerical simulation of the parameters of terahertz polarizers on a silicon substrate

For Russian citation (Opticheskii Zhurnal):

Чеботарёв В.С., Соловьев А.Н., Трофимов А.Д., Ходзицкий М.К. Численное моделирование параметров терагерцовых поляризаторов на кремниевой подложке // Оптический журнал. 2017. Т. 84. № 8. С. 27–29.

 

Chebotarev V.S., Soloviev A.N., Trofimov A.D., Khodzitskiy M.K. Numerical simulation of the parameters of terahertz polarizers on a silicon substrate [in Russian] // Opticheskii Zhurnal. 2017. V. 84. № 8. P. 27–29.

For citation (Journal of Optical Technology):

V. S. Chebotarev, A. N. Solov’ev, A. D. Trofimov, and M. K. Khodzitskiĭ, "Numerical simulation of the parameters of terahertz polarizers on a silicon substrate," Journal of Optical Technology. 84(8), 525-527 (2017). https://doi.org/10.1364/JOT.84.000525

Abstract:

In this study, single- and multilayer polarizers for terahertz radiation from a metal grid on a silicon substrate are analyzed through numerical simulation. Several variants of the polarizer design and the dependences of the polarizer characteristics on its design are obtained. The effects of the grid pitch, number of layers, and their mutual arrangement on the extinction coefficients and losses of the polarizer are numerically analyzed for the first time for choosing the optimal fabrication technology.

Keywords:

terahertz polarizers, multilayer polarizers, grid polarizers

Acknowledgements:

The research was supported by the leading universities of the Russian Federation (074-U01).

OCIS codes: 230.5440, 310.4165, 310.6805

References:

1. A. N. Vinogradov, V. V. Egorov, A. P. Kalinin, A. I. Rodionov, and I. D. Rodionov, “A line of aviation hyperspectrometers in the UV, visible, and near-IR ranges,” J. Opt. Technol. 83(4), 237–243 (2016) [Op. Zh. 83(4), 54–62 (2016)].
2. C. F. Hsieh, Y. C. Lai, R. P. Pan, and C. L. Pan, “Polarizing terahertz waves with nematic liquid crystals,” Opt. Lett. 33, 1174–1176 (2008).
3. Y. Wang, J. H. Yin, Q. Wu, and Y. Tong, “Anisotropic properties of ultra-thin freestanding multi-walled carbon nanotubes film for terahertz polarizer application,” IEEE Trans. Terahertz Sci. Technol. 6(2), 278–283 (2016).
4. A. Wojdyla and G. Gallot, “Brewster’s angle silicon wafer terahertz linear polarizer,” Opt. Express 19, 14099–14107 (2011).

5. K. Takano, H. Yokoyama, A. Ichii, I. Morimoto, and M. Hangyo, “Wiregrid polarizer sheet in the terahertz region fabricated by nanoimprint technology,” Opt. Lett. 36, 2665–2667 (2011).
6. M. M. Nazarov, V. K. Balya, I. Y. Denisyuk, A. Y. Ryabov, and A. P. Shkurinov, “Obtaining terahertz-range metamaterials by laser engraving,” J. Opt. Technol. 79(4), 251–256 (2012) [Opt. Zh. 79(4), 77–84 (2012)].
7. K. Shiraishi and K. Muraki, “Metal-film subwavelength-grating polarizer with low insertion losses and high extinction ratios in the terahertz region,” Opt. Express 23(13), 16676–16681 (2015).
8. Z. Huang, H. Park, E. P. J. Parrott, H. P. Chan, and E. Pickwell-MacPherson, “Robust thin-film wire-grid THz polarizer fabricated via a low-cost approach,” IEEE Photon. Technol. Lett. 25, 81–84 (2013).
9. T. Y. Yu, H. C. Tsai, S. Y. Wang, C. W. Luo, and K. N. Chen, “High transmittance silicon terahertz polarizer using wafer bonding technology,” Proc. SPIE 9585, 95850L (2015).
10. Z. Huang, E. P. J. Parrott, H. Park, H. P. Chan, and E. Pickwell-MacPherson, “High extinction ratio and low transmission loss thin-film terahertz polarizer with a tunable bilayer metal wire-grid structure,” Opt. Lett. 39(4), 793–796 (2014).
11. Z. Huang, H. P. Chan, E. P. J. Parrott, Y. T. Chow, and E. Pickwell-MacPherson, “Ultra-high extinction tri-layer thin-film wire-grid THz polarizer,” in 40th International Conference on Infrared, Millimeter, and Terahertz Waves, Hong Kong, 2015.
12. L. Y. Deng, J. H. Teng, L. Zhang, Q. Y. Wu, H. Liu, X. H. Zhang, and S. J. Chua, “Extremely high extinction ratio terahertz broadband polarizer using bilayer subwavelength metal wire-grid structure,” Appl. Phys. Lett. 101(1), 011101 (2012).
13. A. Cangellaris, C. C. Lin, and K. Mei, “Point-matched time domain finite element methods for electromagnetic radiation and scattering,” IEEE Trans. Antennas Propag. 35(10), 1160–1173 (1987).
14. J. S. Cetnar, J. R. Middendorf, and E. R. Brown, “Extraordinary optical transmission and extinction in a terahertz wire-grid polarizer,” Appl. Phys. Lett. 100(23), 231912 (2012).