ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 681.7.068, 535.3

Single-mode microstructured lightguides with circular placement of cavities for radiation transport in the limited-nonlinearity regime

For Russian citation (Opticheskii Zhurnal):

Демидов В.В. Одномодовые микроструктурированные световоды с круговым расположением пустот для передачи излучения в режиме ограниченной нелинейности // Оптический журнал. 2017. Т. 84. № 8. С. 3–8.

 

Demidov V.V. Single-mode microstructured lightguides with circular placement of cavities for radiation transport in the limited-nonlinearity regime [in Russian] // Opticheskii Zhurnal. 2017. V. 84. № 8. P. 3–8.

For citation (Journal of Optical Technology):

V. V. Demidov, "Single-mode microstructured lightguides with circular placement of cavities for radiation transport in the limited-nonlinearity regime," Journal of Optical Technology. 84(8), 504-508 (2017). https://doi.org/10.1364/JOT.84.000504

Abstract:

This paper theoretically and experimentally analyzes the possibilities of quartz glass microstructures with nonhexagonal (circular) orientation of the cavities in the cladding and a 40-μm-diameter core in order to improve the weak directionality of the fundamental mode. It is established that the criterion for reaching the single-mode regime of radiation propagation is a high discrimination level of the TM01 polarization component of the first upper mode.

Keywords:

microstructured lightguide, large core, single-mode regime, fundamental mode, higher mode, radiation leakage

Acknowledgements:

The research was supported by the Ministry of Education and Science of the Russian Federation (Minobrnauka) (Subsidy 074-U01).

OCIS codes: 060.4005, 060.5295, 060.2430, 060.2270, 060.2280, 060.2400

References:

1. V. V. Dvoyrin, V. M. Mashinsky, L. I. Bulatov, I. A. Bufetov, A. V. Shubin, M. A. Melkumov, E. F. Kustov, E. M. Dianov, A. A. Umnikov, V. F. Khopin, M. V. Yashkov, and A. N. Guryanov, “Bismuth-doped-glass optical fibers—a new active medium for lasers and amplifiers,” Opt. Lett. 31(20), 2966–2968 (2006).
2. E. M. Dianov, “Bismuth-doped optical fibers: a challenging active medium for near-IR lasers and optical amplifiers,” Light Sci. Appl. 1, e12 (2012).
3. I. A. Bufetov, M. A. Melkumov, S. V. Firstov, K. E. Riumkin, A. V. Shubin, V. F. Khopin, A. N. Guryanov, and E. M. Dianov, “Bi-doped optical fibers and fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20(8), 903815 (2014).
4. E. M. Dianov, S. L. Semjonov, and I. A. Bufetov, “New generation of optical fibres,” Quantum Electron. 46(1), 1–10 (2016).
5. S. Girard, J. Kuhnhenn, A. Gusarov, B. Brichard, M. Van Uffelen, Y. Ouerdane, A. Boukenter, and C. Marcandella, “Radiation effects on silica-based optical fibers: recent advances and future challenges,” IEEE Trans. Nucl. Sci. 60(3), 2015–2036 (2013).
6. K. V. Dukel’skiı˘, M. A. Eron’yan, A. V. Komarov, A. Yu. Kulesh, V. N. Lomasov, I. K. Meshkovskiı˘, and A. V. Khokhlov, “Radiation-optical stability of single-mode W-type lightguides with depressed-index fluorosilicate cladding,” J. Opt. Technol. 82(2), 113–115 (2015) [Opt. Zh. 82(2), 64–66 (2015)].
7. Y. Kim, S. Ju, S. Jeong, S. H. Lee, and W.-T. Han, “Gamma-ray radiation response at 1550 nm of fluorine-doped radiation hard single-mode optical fiber,” Opt. Express 24(4), 3910–3920 (2016).
8. A. L. Tomashuk, D. A. Dvoretskiı˘, V. A. Lazarev, A. B. Pnev, V. E. Karasik, M. Yu. Salganskiı˘, P. F. Kashaı˘kin, V. F. Khopin, A. N. Gur’yanov, and E. M. Dianov, “Domestic radiation-stable fiber light-guides,” Vestn. Mosk. Gos. Tekh. Univ. im. N. E. Baumana, Ser. “Mashinostr.” 5, 111–124 (2016).
9. S. J. Mihailov, “Fiber Bragg grating sensors for harsh environments,” Sensors 12(2), 1898–1918 (2012).
10. S. V. Varzhel’, A. S. Mun’ko, K. A. Konnov, A. I. Gribaev, and A. V. Kulikov, “Recording Bragg gratings in hydrogenated birefringent optical fiber with elliptical stress cladding,” J. Opt. Technol. 83(10), 638–641 (2016) [Opt. Zh. 83(10), 74–78 (2016)].
11. S. V. Arkhipov, V. E. Strigalev, N. S. Soldatova, S. V. Varzhel’, A. S. Mun’ko, and Yu. D. Smirnova, “How the efficiency with which Bragg gratings are recorded in birefringent optical fibers depends on the orientation of elliptical stress cladding,” J. Opt. Technol. 83(11), 708–710 (2016) [Opt. Zh. 83(11), 79–82 (2016)].
12. D. J. Richardson, “New optical fibres for high-capacity optical communications,” Phil. Trans. R. Soc. A 374(2062), 20140441 (2016).
13. A. V. Burdin, E. V. Dmitriev, D. E. Praporshchikov, and N. L. Sevruk, “Using quartz multimode fiber lightguides with a bulk central defect of the refractive-index profile in distributed sensors of fiber-optic detectors based on small-mode effects,” Prikl. Foton. 3(3), 252–279 (2016).
14. K. Saitoh and S. Matsuo, “Multicore fiber technology,” J. Lightwave Technol. 34(1), 55–66 (2016).
15. A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow-core microstructured optical fiber with a negative curvature of the core boundary in the spectra region >3.5 μm,” Opt. Express 19(2), 1441–1448 (2011).
16. F. Poletti, “Nested antiresonant nodeless hollow core fiber,” Opt. Express 22(20), 23807–23828 (2014).
17. P. St. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24(12), 4729–4749 (2006).
18. S. Arismar Cerqueira, Jr., “Recent progress and novel applications of photonic crystal fibers,” Rep. Prog. Phys. 73(2), 024401 (2010).
19. W. Jin, J. Ju, H. L. Ho, Y. L. Hoo, and A. Zhang, “Photonic crystal fibers, devices, and applications,” Front. Optoelectron. 6(1), 3–24 (2013).
20. V. S. Shevandin, “A single-mode microstructured lightguide with a large core in a metallic coating,” J. Opt. Technol. 82(2), 116–119 (2015) [Opt. Zh. 82(2), 67–71 (2015)].
21. A. Tunnermann, T. Schreiber, F. Roser, A. Liem, S. Hofer, H. Zellmer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. B: At. Mol. Opt. Phys. 38(9), S681–S693 (2005).
22. L. Dong, “Advanced optical fibers for high power fiber lasers,” in Advances in Optical Fiber Technology: Fundamental Optical Phenomena and Applications, M. Yasin, ed. (InTech, 2015), pp. 221–252.
23. N. A. Mortensen and J. R. Folkenberg, “Low-loss criterion and effective area considerations for photonic crystal fibres,” J. Opt. A: Pure Appl. Opt. 5(3), 163–167 (2003).
24. M. D. Nielsen, N. A. Mortensen, M. Albertsen, J. R. Folkenberg, A. Bjarklev, and D. Bonacinni, “Predicting macrobending loss for large-mode area photonic crystal fibers,” Opt. Express 12(8), 1775–1779 (2004).
25. M. D. Nielsen, J. R. Folkenberg, and N. A. Mortensen, “Single-mode photonic crystal fiber with an effective area of 600 μm 2 and low bending loss,” Electron. Lett. 39(25), 1802–1803 (2003).
26. Yu. A. Gatchin, K. V. Dukel’skiı˘, I. B. Bondarenko, A. A. Sadykov, V. V. Demidov, and E. V. Ter-Nersesyants, “Optical losses during bending of a single-mode microstructured lightguide with a large core,” Nauchno-Tekh. Vestn. Inf. Tekhnol., Mekh. Opt. 15(2), 246–252 (2015).
27. V. V. Demidov, K. V. Dukel’skiı˘, E. V. Ter-Nersesyants, and V. S. Shevandin, “Microstructured single-mode lightguides based on the phenomenon of differential mode damping,” J. Opt. Technol. 79(1), 36–40 (2012) [Opt. Zh. 79(1), 52–57 (2012)].
28. V. Demidov, K. Dukelskii, and V. Shevandin, “Design and characterization of single-mode microstructured fibers with improved bend performance,” in Selected Topics on Optical Fiber Technology, M. Yasin, S. W. Harun, and H. Arof, eds. (InTech, 2012), pp. 447–472.
29. V. Demidov and E. Ter-Nersesyants, “New possibilities of higher-order mode filtering in large-mode-area photonic crystal fibers,” Proc. SPIE 9128, 91280S (2014).
30. C. Martelli, J. Canning, B. Gibson, and S. Huntington, “Bend loss in structured optical fibres,” Opt. Express 15(26), 17639–17644 (2007).
31. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, Boston, 2007; Mir, Moscow, 1996).
32. www.comsol.com.
33. K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,” IEEE J. Quantum Electron. 38(7), 927–933 (2002).

34. J. Olszewski, M. Szpulak, and W. Urbanczyk, “Effect of coupling between fundamental and cladding modes on bending losses in photonic crystal fibers,” Opt. Express 13(16), 6015–6022 (2005).
35. R. Guobin, W. Zhi, L. Shuqin, and J. Shuisheng, “Mode classification and degeneracy in photonic crystal fibers,” Opt. Express 11(11), 1310–1321 (2003).
36. B. T. Kuhlmey, R. C. McPhedran, and C. M. de Sterke, “Modal cutoff in microstructured optical fibers,” Opt. Lett. 27(19), 1684–1686 (2002).
37. J. Fini and R. Bise, “Progress in fabrication and modeling of microstructured optical fibers,” Jpn. J. Appl. Phys. 43(8B), 5717–5730 (2004).