ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 520.2.02, 520.22, 536.413.2

Thermal aberration of an off-axis mirror caused by temperature dropoff over its thickness

For Russian citation (Opticheskii Zhurnal):

Дзитоев А.М., Лаповок Е.В., Ханков С.И. Термоаберрация внеосевого зеркала, вызванная температурным перепадом по его толщине // Оптический журнал. 2017. Т. 84. № 8. С. 47–53.

 

Dzitoev A.M., Lapovok E.V., Khankov S.I. Thermal aberration of an off-axis mirror caused by temperature dropoff over its thickness [in Russian] // Opticheskii Zhurnal. 2017. V. 84. № 8. P. 47–53.

For citation (Journal of Optical Technology):

A. M. Dzitoev, E. V. Lapovok, and S. I. Khankov, "Thermal aberration of an off-axis mirror caused by temperature dropoff over its thickness," Journal of Optical Technology. 84(8), 542-547 (2017). https://doi.org/10.1364/JOT.84.000542

Abstract:

This paper presents a technique for calculating the thermal aberrations of off-axis mirrors used in earth-based telescopes where these aberrations are created by temperature dropoffs over the thickness of the mirror because part of the incident radiation is absorbed by the working surface. It is shown that there are general laws governing the formation of thermal aberrations in axial and off-axis optical systems. Under conditions of heat exchange, mirrors included in an earth-based telescope with a mounting design and an ambient medium that produce a temperature dropoff over the thickness of the mirror, the thermal aberration of the position of the focus for an off-axis mirror is identical to the thermal aberration that occurs under the same heat-exchange conditions in an axial mirror. The calculational technique developed here allows the requirements on allowable values of the absorbed radiation power to be made more precise and makes it possible to study how the thermal aberrations are affected by the defining parameters and to analyze possible ways to reduce the thermal aberrations.

Keywords:

off-axis mirror, thermooptical aberrations of mirrors, thermal regime, radiative heat exchange

OCIS codes: 010.5620, 120.4820, 120.6780, 350.6090

References:

1. S. I. Khankov, “Calculating how the direction and the heat-dissipation intensity affects the thermo-optical aberrations of the focusing mirrors,” Sov. J. Opt. Technol. 53(7), 394–397 (1986) [Opt. Mekh. Prom. (7), 21–24 (1986)].
2. I. I. Zakharchenko and S. I. Khankov, “Calculating the thermo-optical aberrations of a reflective telescope caused by the temperature difference of its elements,” Izv. Vyssh. Uchebn. Zaved. Prib. 32(2), 49–54 (1986).
3. N. O. Baı˘kova and S. I. Khankov, “An algorithm and an analytical technique for calculating the heat-induced aberrations of mirrors,” Inzh.-Fiz. Zh. 66(1), 69–75 (1994).
4. S. I. Khankov, Theoretical Foundations of the Thermal Design of Thermally Loaded Modules of Optoelectronic Systems (NTTs imL.T. Tuchkova, St. Petersburg, 2002).
5. Yu. V. Baeva, E. V. Lapovok, and S. I. Khankov, “Longitudinal thermooptical aberration of the image in reflective telescopes,” J. Opt. Technol. 80(3), 148–153 (2013) [Opt. Zh. 80(3), 30–36 (2013)].
6. Yu. V. Baeva and S. I. Khankov, “How the heat output intensity from the surfaces of a parabolic mirror affects its thermal aberration of the position of the image,” Vopr. Radioelektron. Ser. Tekh. Telev. (2), 103–110 (2014).
7. Yu. V. Baeva and S. I. Khankov, “Principles of the selection of materials for cryo-optical systems using a collection of thermophysical properties,” Vopr. Radioelektron. Ser. Tekh. Telev. (2), 111 (2014).
8. S. V. Gaı˘voronskiı˘ and V. A. Zverev, “Analysis of the correction parameters of an optical system composed of three reflective surfaces,” Izv. Vyssh. Uchebn. Zaved. Prib. (3), 42–47 (2012).
9. A. P. Grammatin and A. A. Sycheva, “Three-mirror telescope objective without screening,” J. Opt. Technol. 77(1), 18–20 (2010) [Opt. Zh. 77(1), 24–27 (2010)].
10. V. A. Danilov, I. E. Putilov, A. M. Savitskiı˘, M. N. Sokol’skiı˘, A. I. Lysenko, and Yu. N. Petrov, “Three-mirror optical system with no screening,” Russian Patent No. 82,876 (2009).
11. A. P. Grammatin, G. M. Gryaznov, and V. D. Starichenkova, “Three-mirror optical system with no screening,” Russian Patent No. 2,327,194 (2008).
12. N. K. Artyukhina, “Construction principles of multimirror systems composed of decentered components,” Visn. Nats. Tekh. Univ. “KhPI” Ser. Prilado. (45), 44–53 (2013).
13. M. M. Miroshnikov, S. V. Lyubarskiı˘, and Yu. P. Khimich, “Mirrors of optical telescopes,” J. Opt. Technol. 77(9), 523–534 (1990) [Opt. Zh. 77(9), 3–18 (1990)].
14. V. A. Gorshkov, A. S. Neverov, A. S. Savel’ev, and A. V. Podobryanskiı˘, “Shaping off-axis aspheric surfaces on automated computer-controlled polishing–lapping machines,” J. Opt. Technol. 78(4), 239–241 (2011) [Opt. Zh. 78(4), 16–20 (2011)].
15. G. M. Popov, Modern Astronomical Optics (Nauka, Moscow, 1988).
16. N. N. Mikhel’son, The Optics of Astronomical Telescopes and Methods of Designing Them (Fizmatlit, Moscow, 1995).
17. D. D. Maksutov, Astronomical Optics (Nauka, Moscow, 1979).
18. D. D. Maksutov, Fabrication and Study of Astronomical Optics (Nauka, Moscow, 1984).
19. “Off-axis parabolic mirrors,” http://www.tydex.ru.
20. S. V. Tsaplin and S. V. Bolychev, “Modeling how the thermal factors of outer space affect the optical characteristics of a space-based refractive telescope,” Vestn. Samar. Gos. Univ., Estestvennonauchn. Ser. 3(104), 97–106 (2013).
21. G. N. Dul’nev and É. N. Semyashkin, Heat Exchange in Electronic Apparatus (Énergiya, Leningrad, 1968).