ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 535.8, 537.8

Surface plasmon polariton based metal-insulator-metal filter including two face to face concentric semi-rings with different radius

For Russian citation (Opticheskii Zhurnal):

Xia Liu, Jinping Tian, Rongcao Yang Surface plasmon polariton based metal-insulator-metal filter including two face to face concentric semi-rings with different radius (Фильтр поверхностных плазмон-поляритонов на структуре металл–изолятор–металл, состоящий из двух оппозитных полуколец с различными радиусами) [на англ. яз.] // Оптический журнал. 2017. Т. 84. № 9. С. 13–18.

 

Xia Liu, Jinping Tian, Rongcao Yang Surface plasmon polariton based metal-insulator-metal filter including two face to face concentric semi-rings with different radius (Фильтр поверхностных плазмон-поляритонов на структуре металл–изолятор–металл, состоящий из двух оппозитных полуколец с различными радиусами) [in English] // Opticheskii Zhurnal. 2017. V. 84. № 9. P. 13–18.

For citation (Journal of Optical Technology):

Xia Liu, Jinping Tian, and Rongcao Yang, "Surface plasmon polariton based metal-insulator-metal filter including two face-to-face concentric semi-rings with different radii," Journal of Optical Technology. 84(9), 588-592 (2017). https://doi.org/10.1364/JOT.84.000588

Abstract:

The propagation characteristics of excited surface plasmon polaritons in a plasmonic filter are studied by controlling the geometric parameters of the waveguide. The proposed filter is composed of two nanoscale metal-insulator-metal type surface plasmon polaritons based bus waveguide connected through two face to face concentric semi-rings with different radius placed at the top and bottom sides. Numerical results show that the wavelengths of the transmission spectra dips have changes of red shift when either the radius of the two semirings or the refractive index of the insulator is increased. This sensitivity is superior to the filter properties, and thus we believe that the proposed waveguide structure has potential application in the nanoscale photonic devices integration.

Keywords:

surface plasmon polaritons, filter, transmission spectra

Acknowledgements:

This work was supported by the National Natural Science Foundation of China (Grant No. 61475198) and Research Project Supported by Shanxi Scholarship Council of China (Grant No. 2011-002).

OCIS codes: 240.6680, 230.0230, 250.3140

References:

1. Barnes W.L., Dereux A., Ebbesen T.W. Surface plasmon subwavelength optics // Nature. 2003. V. 424(6950). P. 824–830.
2. Lezec H.J., Degiron A., Devaux E., Linke R.A., Martin-Moreno L., Garcia-Vidal F.J., Ebbesen T.W. Beaming light from a subwavelength aperture // Science. 2002. V. 297(5582). P. 820–822.
3. Pile D.F.P., Gramotnev D.K. Plasmonic subwavelength waveguides: Next to zero losses at sharp bends // Opt. Lett. 2005. V. 30(10). P. 1186–1188.
4. Leon I., Berini P. Amplification of long-range surface plasmons by a dipolar gain medium // Nat. Photon. 2010. V. 4(6). P. 382–387.
5. Lee T., Gray S. Subwavelength light bending by metal slit structures // Opt. Exp. 2005. V. 13(24). P. 9652–9659.
6. Veronis G., Fan S. Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides // Appl. Phys. Lett. 2005. V. 87(13). P. 131102.
7. Gao H., Shi H., Wang C., Du C., Luo X., Deng Q., Lv Y., Lin X., Yao H. Surface plasmon polariton propagation and combination in Y-shaped metallic channels // Opt. Exp. 2005. V. 13(26). P. 10795–10800.
8. Wang B., Wang G.P. Surface plasmon polariton propagation in nanoscale metal gap waveguides // Opt. Lett. 2004. V. 29(17). P. 1992–1994.
9. Nikolajsen T., Leosson K., Bozhevolnyia S.I. Surface plasmon polariton based modulators and switches operating at telecom wavelengths // Appl. Phys. Lett. 2004. V. 85(24). P. 5833–5835.
10. Zhao H., Guang X., Huang J. Novel optical directional coupler based on surface plasmon polaritons // Physica E. 2008. V. 40(10). P. 3025–3029.
11. Dilbacher H., Krenn J.R., Schider G., Leitner A., Aussenegg F.R. Two-dimensional optics with surface plasmon polaritons // App. Phys. Lett. 2002. V. 81(10). P. 1762–1764.
12. Bozhevolnyi S.I., Erland J., Leosson K., Skovgaard P.M.W., Hvanm J.M. Waveguiding in surface plasmon polariton band gap structures // Phys. Rev. Lett. 2011. V. 86(14). P. 3008–3011.
13. Lin X.S., Huang X.G. Tooth-shaped plasmonic waveguide filters with nanometric sizes // Opt. Lett. 2008. V. 33(23). P. 2874–2876.
14. Zhang Z.Y., Wang J.D., Zhao Y.N., LuD., Xiong Z.H. Numerical investigation of a branch-shaped filter based on metalinsulator-metal waveguide // Plasmonics. 2011. V. 6(4). P. 773–778.
15. Chen P.X., Liang R.S., Huang Q.D., Yu Z., Xu X.K. Plasmonic filters and optical directional couplers based on wide metal-insulator-metal structure // Opt. Exp. 2011. V. 19(8). P. 7633–7639.
16. Hwang Y., Kim J.E., Park H.Y., Kee C.S. Plasmonic stop band formation in a metal-insulator-metal ring with a narrow gap // J. Optics. 2011. V. 13(7). P. 075006.
17. Yun B.F., Hu G. H., Cui Y.P. Theoretical analysis of a nanoscale plasmonic filter based on a rectangular metal-insulatormetal waveguide // J. Physics D: Appl. Phys. 2010. V. 43(38) P. 385102.
18. Zand I., Mahigir A., Pakizeh T., Abrishamian M.S. Selective-mode optical nanofilters based on plasmonic complementary split-ring resonators // Opt. Exp. 2012. V. 20(7). P. 7516–7525.

19. Zand I., Abrishamian M.S., Berini P. Highly tunable nanoscale metal-insulator-metal split ring core ring resonators (SRCRRs) // Opt. Exp. 2013. V. 21(1). P. 79–86.
20. Lin X. S., Huang X. G. Tooth-shaped plasmonic waveguide filters with nanometric sizes // Opt. Lett. 2008. V. 33(23). P. 2874–2876.
21. Tao J., Huang X.G., Lin X., Zhang Q., Jin X. A narrowband subwavelength plasmonic waveguide filter with asymmetrical multiple-teeth-shaped structure // Opt. Exp. 2009. V. 17(16). P. 13989–13994.
22. Pannipitiya A., Rukhlenko I.D., Premaratne M., Hattori H.T. Agrawal G.P. Improved transmission model for metaldielectric-metal plasmonic waveguides with stub structure // Opt. Exp. 2010. V. 18(6). P. 6191–6204.
23. Luo X., Zou X.H., Li X.F, Zhou Z., Pan W., Yan L.S., Wen K.H. High-uniformity multichannel plasmonic filter using linearly lengthened insulators in metal–insulator–metal waveguide // Opt. Lett. 2013. V. 38(9). P. 1585–1587.
24. Wen K.H., Yan L.S., Pan W., Luo B., Guo Z., Guo Y.H., Luo X.G. Design of plasmonic comb-like filters using loop-based resonators // Plasmonics. 2013. V. 8(2). P. 1017–1022.
25. Lu H., Liu X.M., Mao D., Wang L.R., Gong Y.K. Tunable band-pass plasmonic waveguide filters with nanodisk resonators // Opt. Exp. 2010. V. 18(17). P. 17922–17927.
26. Rezaei M., Miri M., Khavasi A., Mehrany K., Rashidian B. An efficient circuit model for the analysis and design of rectangular plasmonic resonators // Plasmonics. 2012. V. 7(2). P. 245–252.
27. Yun B.F., Hu G.H., Cui Y.P. Resonant mode analysis of the nanoscale surface plasmon polariton waveguide filter with rectangle cavity // Plasmonics. 2013. V. 8(2). P.267–275.
28. Wu T.S., Liu Y.M., Yu Z.Y., Peng Y.W., Shu C.G., Ye H. The sensing characteristics of plasmonic waveguide with a ring resonator // Opt. Exp. 2014. V. 22(7). P. 7669–7677.
29. Wang T.B., Wen X.W., Yin C.P., Wang H.Z. The transmission characteristics of surface plasmon polaritons in ring resonator // Opt. Exp. 2009. V. 17(26). P. 24096–24101.
30. Johnson P.B., Christy R.W. Optical constants of the noble metals // Phys. Rev. B. 1972. V. 6(12). P. 4370–4379.
31. Dionne J.A., Sweatlock L.A., Atwater H.A., Polman A. Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization // Phys. Rev. B. 2006. V. 73(3). P. 035407.
32. Wang B., Wang G.P. Plasmon Bragg reflectors and nanocavities on flat metallic surfaces // Appl. Phys. Lett. 2005. V. 87(1). P. 013107.