ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 535.42

Effect of the fill factor of an annular diffraction grating on the energy distribution in the focal plane

For Russian citation (Opticheskii Zhurnal):

Устинов А.В., Порфирьев А.П., Хонина С.Н. Влияние соотношения ширины полос дифракционной кольцевой решетки на распределение энергии в фокальной плоскости // Оптический журнал. 2017. Т. 84. № 9. С. 3–12.

 

Ustinov A.V., Porfiriev A.P., Khonina S.N. Effect of the fill factor of an annular diffraction grating on the energy distribution in the focal plane [in Russian] // Opticheskii Zhurnal. 2017. V. 84. № 9. P. 3–12.

For citation (Journal of Optical Technology):

A. V. Ustinov, A. P. Porfir’ev, and S. N. Khonina, "Effect of the fill factor of an annular diffraction grating on the energy distribution in the focal plane," Journal of Optical Technology. 84(9), 580-587 (2017). https://doi.org/10.1364/JOT.84.000580

Abstract:

We have considered the effect of the fill factor of an annular binary phase grating on the energy distribution in the focal plane. A theoretical analysis is carried out, using two approaches. One of them makes it possible to describe the overall structure of the distribution in the entire focal plane but is unsuitable for solving the inverse problem. The second approach makes it possible to explain the fine structure in the region of the intensity maxima corresponding to the diffraction orders. In particular, this approach explains the fact of a possible splitting of the focal ring into two and makes it possible to compute the intensity ratio of the two rings. The results of the theoretical calculations and numerical modeling are confirmed by experimental studies. As a result, we have shown the ability to dynamically change the focal structure by regulation of the grating’s fill factor.

Keywords:

circular diffraction gratings, fill factor of grating, splitting of focal rings, diffraction orders

Acknowledgements:

The research was supported by the Ministry of Education and Science of the Russian Federation (Minobrnauka), President of the Russian Federation (MK-2390.2017.2); Russian Foundation for Basic Research (RFBR) (16-07-00825, 16-29-11698, 16-29-11744, 17-42-630008).

OCIS codes: 050.1950, 050.1960

References:

1. J. H. McLeod, “The axicon: a new type of optical element,” J. Opt. Soc. Am. 44, 592–597 (1954).
2. A. Fedotowsky and K. Lehovec, “Far-field diffraction patterns of circular gratings,” Appl. Opt. 13(11), 2638–2642 (1974).
3. Z. Jaroszewicz, A. Burvall, and A. T. Friberg, “Axicon—the most important optical element,” Opt. Photon. News 16(4), 34–39 (2005).
4. J. Durnin, J. J. Miceli, Jr., and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
5. A. Vasara, J. Turunen, and A. T. Friberg, “Realization of general non-diffracting beams with computer-generated holograms,” J. Opt. Soc. Am. A 6, 1748–1754 (1989).
6. Yu. A. Batusov and L. M. Soroko, “History of the origin of mesooptics,” Fiz. Elem. Chastits At. Yadra 40(2), 457–496 (2009).
7. S. N. Khonina and S. A. Balalaev, “The comparative analysis of the intensity distributions formed by diffractive axicon and diffractive logarithmic axicon,” Comp. Opt. 33(2), 162–174 (2009).
8. M. Rioux, R. Tremblay, and P.-A. Belanger, “Linear, annular, and radial focusing with axicons and applications to laser machining,” Appl. Opt. 17, 1532–1536 (1978).
9. S. N. Khonina, R. V. Skidanov, A. A. Almazov, V. V. Kotlyar, V. A. Soifer, and A. V. Volkov, “DOE for optical micromanipulation,” Proc. SPIE 5447, 304–311 (2004).
10. V. A. Soifer, V. V. Kotlyar, and S. N. Khonina, “Optical microparticle manipulation: advances and new possibilities created by diffractive optics,” Phys. Part. Nucl. 35(6), 733–766 (2004).
11. B. Shao, S. C. Esener, J. M. Nascimento, E. L. Botvinick, and M. W. Berns, “Dynamically adjustable annular laser trapping based on axicons,” Appl. Opt. 45, 6421–6428 (2006).
12. V. A. Soifer, ed., Computer Design of Diffractive Optics (Woodhead Pub. Ltd., Cambridge, 2012).
13. S. N. Khonina and A. V. Ustinov, “Spatial–spectral analysis of binary diffraction optical elements coded on the basis of a complex-conjugate additive,” Izv. Samar. Nauchn. Tsent. Ross. Akad. Nauk 16(6), 10–18 (2014).
14. S. N. Khonina, P. G. Serafimovich, D. A. Savelyev, and I. A. Pustovoi, “Diffraction at binary microaxicons in the near field,” J. Opt. Technol. 79(10), 626–631 (2012) [Opt. Zh. 79(10), 22–29 (2012)].
15. S. N. Khonina, D. V. Nesterenko, A. A. Morozov, R. V. Skidanov, and V. A. Soifer, “Narrowing of a light spot at diffraction of linearly polarized beam on binary asymmetric axicons,” Opt. Mem. Neural Networks (Inf. Opt.) 21(1), 17–26 (2012).
16. I. Amidror, “Fourier spectrum of radially periodic images,” J. Opt. Soc. Am. A 14(4), 816–826 (1997).
17. I. Amidror, “The Fourier spectrum of circular sine and cosine gratings with arbitrary radial phases,” Opt. Commun. 149, 127–134 (1998).
18. I. Amidror, “Fourier spectrum of radially periodic images with a non-symmetric radial period,” J. Opt. A 1, 621–625 (1999).