ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 535.3, 681.75

Stabilization of the exit pupil in an optical zoom sight with variable magnification

For Russian citation (Opticheskii Zhurnal):

Хацевич Т.Н., Волкова К.Д. Обеспечение стабильности положения выходного зрачка при смене увеличения в оптических панкратических прицелах // Оптический журнал. 2017. Т. 84. № 9. С. 34–43.

 

Khatsevich T.N., Volkova K.D. Stabilization of the exit pupil in an optical zoom sight with variable magnification [in Russian] // Opticheskii Zhurnal. 2017. V. 84. № 9. P. 34–43.

For citation (Journal of Optical Technology):

T. N. Khatsevich and K. D. Volkova, "Stabilization of the exit pupil in an optical zoom sight with variable magnification," Journal of Optical Technology. 84(9), 605-612 (2017). https://doi.org/10.1364/JOT.84.000605

Abstract:

This paper presents and discusses the optical layouts of eyepieces for telescopic systems with variable magnification. It is shown that using optical layouts of eyepieces with a virtual front focus and eyepieces with a telecentric path of the principal rays in object space increases the region of the solutions. Relationships between the parameters of the optical layout of the eyepiece are found that ensure that the position of the exit pupil of the system varies no more than ±5  mm when the nominal relief is 95 mm. Results are presented of the development of the optical systems of zoom sights with a stable position of the exit pupil as the magnification changes.

Keywords:

variable magnification, zoom sight, stable position, exit pupil, eyepiece, telescopic system

OCIS codes: 220.4830, 220.2740, 230.1150

References:

1. T. N. Khatsevich and E. V. Druzhkin, “Method of varying the direction of the viewing axis in an optical sight, and a variable-magnification sight that implements the method,” Russian Patent No. 2,501,051 (2013).
2. T. Kryszczy ´nski, “Method for solving paraxial pupil problems in zoom systems,” Proc. SPIE 3129, 193–204 (1997).
3. T. Kryszczy ´nski, “Paraxial determination of the general four-component zoom system with mechanical compensation,” Proc. SPIE 2539, 180–191 (1995).
4. T. Kryszczy ´nski, “Development of the double-sided telecentric three-component zoom systems by means of matrix optics,” Proc. SPIE 7141, 714111 (2008).
5. T. Kryszczy ´nski, M. Leśniewski, and J. Mikucki, “Use of matrix optics to analyze the complex multi-group zoom systems,” Proc. SPIE 8697, 869701 (2012).
6. A. Miks and J. Novak, “Paraxial analysis of three-component zoom lens with fixed distance between object and image points and fixed position of image-space focal point,” Opt. Express 22(13), 15571–15576 (2014).
7. S. Pal and L. N. Hazra, “Structural design of optically compensated zoom lenses using genetic algorithm,” Proc. SPIE 7429, 742910 (2009).
8. S. Pal and L. N. Hazra, “A novel approach for structural synthesis of zoom systems,” Proc. SPIE 7786, 778607 (2010).
9. S. Pal, “Structural design of mechanically compensated zoom lenses by evolutionary programming,” Opt. Eng. 56(6), 063001 (2012).
10. S. Pal and L. N. Hazra, “Stabilization of pupils in a zoom lens with two independent movements,” Appl. Opt. 52(23), 5611–5618 (2013).
11. K. Tanaka, “Zooming-component loci of mechanically compensated zoom lenses,” Proc. SPIE 3729, 452–457 (1999).
12. K. Tanaka, “General paraxial analysis of mechanically compensated zoom lenses,” Proc. SPIE 3749, 286–287 (1999).
13. A. Dodoc, “Toward the global optimum in zoom lens design,” Proc. SPIE 8488, 848802 (2012).
14. X. Li and Z. Cen, “Optimization design of zoom lens systems,” Proc. SPIE 4927, 44–49 (2002).
15. C. Chen, “Complete solutions of zoom curves of three-component zoom lenses with the second component fixed,” Appl. Opt. 53(29), H58–H66 (2014).
16. M.-S. Yeh and S.-G. Shiue, “First-order analysis of a two-conjugate zoom system,” Opt. Eng. 35(11), 3348–3360 (1996).
17. M.-S. Yeh, S.-G. Shiue, and M.-H. Lu, “Solution for first-order design of a two-conjugate zoom system,” Opt. Eng. 36(8), 2261–2267 (1997).
18. J. Zhang, X. Chen, J. Xi, and Z. Wu, “Paraxial analysis of double-sided telecentric zoom lenses with four components,” Opt. Eng. 53(11), 115103.1 (2014).
19. J. Zhang, X. Chen, J. Xi, and Z. Wu, “Paraxial analysis of double-sided telecentric zoom lenses with three components,” Appl. Opt. 53(22), 4957–4967 (2014).
20. K. M. Bystricky and P. R. Yoder, Jr., “An improved zoom lens with external entrance pupil,” Proc. SPIE 0039, 299–304 (1974).
21. B. Zinter and M. Sanson, “Telecentric zoom lens,” Proc. SPIE 4487, 130–139 (2001).
22. V. A. Zverev, R. Khoi, and V. T. Tochilina, “Linearization of the relationship of the displacements of the components in a two-component variable-magnification system,” J. Opt. Technol. 70(11), 794–796 (2003) [Opt. Zh. 70(11), 37–39 (2003)].
23. L. N. Andreev, “Two-component ‘inexact’ pancratic systems,” J. Opt. Technol. 67(3), 261–262 (2000) [Opt. Zh. 67(3), 66–67 (2000)].
24. N. V. Luen, “Automation of the design of a telescopic zoom system,” J. Opt. Technol. 80(12), 735–737 (2013) [Opt. Zh. 80(12), 22–25 (2013)].
25. S. A. Zhurova and V. A. Zverev, “Bases for designing variable-magnification optical systems,” J. Opt. Technol. 66(10), 898–912 (1999) [Opt. Zh. 60(10), 68–86 (1999)].
26. K. V. Ezhova, V. A. Zverev, and N. V. Luen, “Aberrational properties of a thin component as the basic element in a variable-magnificationoptical system,” J. Opt. Technol. 80(12), 738–740 (2013) [Opt. Zh. 80(12), 26–30 (2013)].
27. V. A. Zverev, N. V. Luen, and T. V. Tochilina, “Composite of the principal layouts of variable-magnification optical systems,” in Transactions of the Tenth International Conference on Applied Optics, St. Petersburg (2012), vol. 2, pp. 51–56.
28. A. B. Ostrun and A. V. Ivanov, “Investigation of the algorithm for synthesizing double-conjugation optical systems in the Gaussian region,” Nauchn. Izd. MGTU im. N.É. Baumana Nauka Obraz. (3), 219–228 (2014).
29. I. I. Pakhomov, D. E. Piskunov, and A. M. Khorokhorov, “Numerical method for calculating variable-magnification systems with an arbitrary number of movable components,” Vest. Mosk. Gos. Tekh. Univ. im. N.É. Baumana Ser. Prib. 9(9), 25–35 (2012).
30. T. Wagner and V. Tautz, “Telescope with variable magnification,” U.S. Patent No. 20070159685 (2007).
31. T. N. Khatsevich, Applied Optics: A Laboratory Workbook (SGGA, Novosibirsk, 2006).
32. L. A. Zapryagaeva and I. S. Sveshnikova, Calculation and Design of Optical Systems (Logos, Moscow, 2000).
33. O. P. Verkhoturov, Introduction to Computational Optics (SGGA, Novosibirsk, 1998).
34. Designer’s Handbook of Optomechanical Devices (Mashinostroenie, Leningrad, 1980).