ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 533.9.072

Experimental stand for the reproduction of the parameters of a shock-compressed layer

For Russian citation (Opticheskii Zhurnal):

Бедрин А.Г., Миронов И.С. Экспериментальный стенд для воспроизведения параметров ударно-сжатого слоя // Оптический журнал. 2017. Т. 84. № 9. С. 54–58.

 

Bedrin A.G., Mironov I.S. Experimental stand for the reproduction of the parameters of a shock-compressed layer [in Russian] // Opticheskii Zhurnal. 2017. V. 84. № 9. P. 54–58.

For citation (Journal of Optical Technology):

A. G. Bedrin and I. S. Mironov, "Experimental stand for the reproduction of the parameters of a shock-compressed layer," Journal of Optical Technology. 84(9), 621-624 (2017). https://doi.org/10.1364/JOT.84.000621

Abstract:

A stand with a magnetically compressed discharge reproduces the parameters of a shock-compressed layer (SCL) of aerospace objects moving in the atmosphere at velocities of 3–12 km/s and altitudes of 30–60 km. In a magnetically compressed discharge, the plasma with the parameters of the SCL is created not by decelerating high-velocity jets on the material under test but in the discharge along its surface and is compressed against it by an external magnetic field. The stand can be used for testing heat-shielding and structural materials, as well as for studying the radiative characteristics of an SCL, considering the ablation products of streamlined surfaces in connection with the development of optical methods for detecting and selecting objects moving in an atmosphere with hypersonic velocities.

Keywords:

shock-compressed layer, magnetically compressed discharge, radiation, braking enthalpy, destructive energy

OCIS codes: 010.5620, 350.5400

References:

1. I. S. Mironov and P. N. Rogovtsev, “Possibility of detecting and selecting ballistic targets entering the atmosphere from the radiation of the boundary region of the shock-compressed layer in the ultraviolet range of the spectrum,” Vopr. Oboronnoı˘ Tekh. 10(5), 11–14 (1992).
2. S. Georgiev, “Comparison of various experimental setups from the point of view of modeling processes of thermal destruction of materials at hypersonic speeds,” in Technology of Hypersonic Research, translated from English (Mir, Moscow, 1964), pp. 484–521.
3. I. V. Podmoshenskiı˘, “Physics and technology of plasma light sources,” Trudy GOI 52(186), 19–38 (1983).
4. E. V. Kalachnikov, I. S. Mironov, L. A. Pavlova, and P. N. Rogovtsev, “Investigation of the dynamics of radiation of a high-current magnetically compressed discharge,” Teplofiz. Vys. Temp. 24(5), 837–843 (1986).
5. A. G. Bedrin, S. P. Dashuk, and I. S. Mironov, “High-power plasma radiator for pulsed and continuous irradiation,” J. Opt. Technol. 77(3), 169–172 (2010) [Opt. Zh. 77(3), 22–26 (2010)].
6. Yu. V. Polezhaev, V. A. Tlevtsezhev, and V. L. Strakhov, “Investigation of the behavior of composite materials under conditions of combined action of radiation and convection heat fluxes,” Teplofiz. Vys. Temp. 27(2), 341–346 (1989).
7. L. D. Gorshkova, I. S. Mironov, and I. V. Podmoshenskiı˘, “Electromagnetic characteristics and energy balance of an H-compressed discharge,” Teplofiz. Vys. Temp. 16(6), 1130–1133 (1978).
8. L. D. Gorshkova, V. A. Gorshkov, and I. V. Podmoshenskiı˘, “Obtaining plasma in a discharge compressed against the wall by a magnetic field,” Teplofiz. Vys. Temp. 6(6), 1130–1132 (1968).
9. Yu. V. Polezhaev and F. B. Yurevich, Heat Shielding (Energiya, Moscow, 1976).