ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2018-85-01-52-58

Analysis on the errors of integrating sphere for the transmittance of nonplanar optical components

For Russian citation (Opticheskii Zhurnal):

Chengzhi Su, Xiang Liu, Jian Zhang Analysis on the errors of integrating sphere for the transmittance of nonplanar optical components (Анализ ошибок интегрирующей сферы в измерениях пропускания неплоских оптических компонентов) [на англ. яз.] // Оптический журнал. 2018. Т. 85. № 1. С. 52–58. http://doi.org/10.17586/1023-5086-2018-85-01-52-58

 

Chengzhi Su, Xiang Liu, Jian Zhang Analysis on the errors of integrating sphere for the transmittance of nonplanar optical components (Анализ ошибок интегрирующей сферы в измерениях пропускания неплоских оптических компонентов) [in English] // Opticheskii Zhurnal. 2018. V. 85. № 1. P. 52–58. http://doi.org/10.17586/1023-5086-2018-85-01-52-58

For citation (Journal of Optical Technology):

Chengzhi Su, Xiang Liu, and Jian Zhang, "Analysis of the errors of the integrating sphere for the transmittance of nonplanar optical components," Journal of Optical Technology. 85(1), 42-47 (2018). https://doi.org/10.1364/JOT.85.000042

Abstract:

In optical field, it is very necessary that using integrating sphere to measure the intensity of the incident beam. In the actual measurement, however, there exists an illogical situation with the perfect integrating sphere as an optical reflecting diffuser that the measured values of the illumination are different. In order to explain this situation, the model of the relationship between the incident beam geometry and the output illumination of integrating sphere was developed and a simulation experiment was conducted. The simulation error of the transmittance, with a 300mm diameter and 3% core-opening ratio, could reach 0.5% when the changes of incident beam geometry. The experimental results and analysis show that the random change of escaping ratio of the luminous flux caused by the random position and distribution of spot, which is the main source of the illogical situation. It provides theoretical guidance to the integrating sphere based on optical measurement.

Keywords:

integrating sphere, optical measurement, beam geometry, spot distribution

OCIS codes: 120.3150

References:

1. Jitendra Kumar Pandey, Gopal R. Laser-induced chlorophyll fluorescence and reflectance spectroscopy of cadmium treated Triticum aestivum L. plants // J. Spectroscopy. 2011. V. 26. № 2. P. 129–139.
2. Monem S., Singh A., Karsten A.E., Amin R., Harith M.A. Study of the optical properties of solid tissue phantoms using single and double integrating sphere systems // Appl. Phys. B. 2015. V. 121. № 2. P. 265–274.
3. Aduev B.P., Nurmukhametov D.R., Belokurov G.M., Zvekov A.A., Nikitin A.P., Liskov I.Y., Kalenskii A.V. Integrating sphere study of the optical properties of aluminum nanoparticles in tetranitropentaerytrite // Technical Physics. 2014. V. 59. № 9. P. 1387–1392.
4. Assadi H., Karshafian R., Douplik A. Optical scattering properties of intralipid phantom in presence of encapsulated microbubbles // Internat. J. Photoenergy. 2014. № 1. P. 1–9.
5. Compton J.A., Clarke F.J.J. Correction methods for integrating-sphere measurement of hemispherical reflectance // Color Research & Application. 2007. V. 11. № 4. P. 253–262.
6. Jacquez J.A., Kuppenheim H.F. Theory of integrating sphere // JOSA. 1955. V. 45. № 6. P. 460–470.
7. Tardy H.L. Matrix method for integrating-sphere calculation // JOSA. A. 1991. V. 8. № 9. P. 1411–1418.
8. Lin F., Li T., Yin D., Lai L., Xia M. Research on effects of baffle position in an integrating sphere on the luminous flux measurement // Eighth Internat. Symp. Advanced Optical Manufacturing & Testing Technology. 2016.
9. Liu B., Yuan Y., Yu Z.Y., Huang X., Tan H.P. Numerical investigation of measurement error of the integrating sphere based on the Monte-Carlo method // Infrared Phys. & Technol. 2016. V. 79. P. 121–127.
10. Davies J.M., Zagieboylo W. An integrating sphere system for measuring average reflectance and transmittance // Appl. Opt. 1965. V. 4. № 2. P. 167–174.
11. Goebel D.G. Generalized integrating-sphere theory // Appl. Opt. 1967. V. 6. № 1. P. 125.
12. Chen Y., Liou K.N. A Monte-Carlo method for 3D thermal infrared radiative transfer // Quant. Spectrosc. Radiat. Transfer. 2006. V. 101. № 1. P. 166–178.
13. Huai Chun Zhou, Dong Lin Chen, Qiang Cheng. A new way to calculate radiative intensity and solve radiative transfer equation through using the Monte-Carlo method // Quant. Spectrosc. Radiat. Transfer. 2004. V. 83. № 3–4. P. 459–481.
14. Edwards D.K., Gier J.T., Nelson K.E., Roddick R.D. Integrating sphere for imperfectly diffuse samples // JOSA. 1961. V. 51. № 11. P. 1279–1288.
15. Crowher B.G. Computer modeling of integrating spheres // Appl. Opt. 1996. V. 35. № 30. P. 5880.
16. Hanssen L.M. Effects of non-Lambertian surfaces on integrating sphere measurements // Appl. Opt. 1996. V. 35. № 19. P. 3597–3606.
17. Wang J., Wang Y. A new application of integrating sphere // Proc. SPIE. The International Society. 2000. P. 4221.