ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2018-85-10-22-25

УДК: 621.373.826

Effect of the spectral composition of laser diode pumping of Nd3+:YAG lasers on the reduction of pump efficiency for a temperature shift of the spectrum by 25–30  nm

For Russian citation (Opticheskii Zhurnal):

Левошкин А.В. Влияние спектрального состава лазерной диодной накачки YAG:Nd3+ лазеров на снижение её эффективности при температурном смещении спектра в пределах до 25–30 нм // Оптический журнал. 2018. Т. 85. № 10. С. 22–25. http://doi.org/10.17586/1023-5086-2018-85-10-22-25

 

Levoshkin A.V. Effect of the spectral composition of laser diode pumping of Nd3+:YAG lasers on the reduction of pump efficiency for a temperature shift of the spectrum by 25–30 nm [in Russian] // Opticheskii Zhurnal. 2018. V. 85. № 10. P. 22–25. http://doi.org/10.17586/1023-5086-2018-85-10-22-25

For citation (Journal of Optical Technology):

A. V. Levoshkin, "Effect of the spectral composition of laser diode pumping of Nd3+:YAG lasers on the reduction of pump efficiency for a temperature shift of the spectrum by 25–30  nm," Journal of Optical Technology. 85(10), 614-617 (2018). https://doi.org/10.1364/JOT.85.000614

Abstract:

The change in the absorption efficiency of laser diode emission in the gain medium of Nd3+:YAG lasers is considered for a temperature shift of the pump spectrum by 25–30 nm. It is shown that, for a typical width of the emission spectrum of modern linear laser diode arrays, the minimum efficiency can be significantly increased if the pump spectrum consists of not one but two spectral peaks of different intensities. The increase in the number of peaks to more than two does not lead to any significant improvement in efficiency.

Keywords:

Nd:YAG laser, diode pumping

OCIS codes: 140.3480, 140.3530, 140.5560

References:

1. J. C. McCarthy, Y. E. Young, R. C. Day, J. Konves, P. A. Ketteridge, K. Snell, and E. P. Chicklis, “Athermal lightweight diode pumped 1 micron transmitter,” Proc. SPIE 5707, 237–242 (2005).
2. K. Lee, Y. Kim, S. Lee, J. H. Kwon, J. S. Gwak, and J. Yi, “Reducing temperature dependence of the output energy of a quasi-continuous wave diode-pumped Nd:YAG laser,” Appl. Opt. 52(24), 5967–5973 (2013).
3. B. Crepy, G. Glosse, J. Da Cruz, D. Sabourdy, J. Montagne, and L. Nguyen, “Athermal diode-pumped laser designator modules for targeting applications,” Proc. SPIE 8541, 85410R (2012).
4. A. E. Waı˘nshenker, A. V. Vilenskiı˘, A. A. Kazakov, B. G. Lysoı˘, L. K. Mikhaı˘lov, and V. A. Pashkov, “Diode-pumped Nd3+ :YAG laser with Q-switched operation in a wide temperature range without thermal stabilization of pump diodes,” Quantum Electron. 43(2), 114–116 (2013) [Kvant. Elektron. 43(2), 114–116 (2013)].
5. W. Koechner, Solid-State Laser Engineering (Springer-Verlag, Berlin 2006).
6. E. Durand, C. Derycke, L. Boudjemaa, C. Simon-Boisson, L. Roucayrol, R. Perez, B. Faure, and S. Maurice, “Conduction cooled compact laser for the supercam LIBS-Raman instrument,” Proc. SPIE 10562, 105620O (2016).
7. B. W. Schilling, S. R. Chinn, A. D. Hays, L. Goldberg, and C. W. Trussell, “End-pumped 1.5-μm monoblock laser for broad temperature operation, ” Appl. Opt. 45(25), 6607–6615 (2006).
8. L. Goldberg, J. Nettleton, B. Schilling, W. Trussel, and A. Hays, “Compact laser sources for laser designation, ranging and active imaging,” Proc. SPIE 6552, 65520G (2007).
9. W. Xie, X. Ma, X. Zhu, X. Xie, Y. Dong, X. Chen, and W. Chen, “Temperature insensitive high energy Q-switched Nd:YAG slab laser,” Laser Phys. Lett. 14(6), 065803 (2017).