DOI: 10.17586/1023-5086-2018-85-10-22-25
УДК: 621.373.826
Effect of the spectral composition of laser diode pumping of Nd3+:YAG lasers on the reduction of pump efficiency for a temperature shift of the spectrum by 25–30 nm
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Левошкин А.В. Влияние спектрального состава лазерной диодной накачки YAG:Nd3+ лазеров на снижение её эффективности при температурном смещении спектра в пределах до 25–30 нм // Оптический журнал. 2018. Т. 85. № 10. С. 22–25. http://doi.org/10.17586/1023-5086-2018-85-10-22-25
Levoshkin A.V. Effect of the spectral composition of laser diode pumping of Nd3+:YAG lasers on the reduction of pump efficiency for a temperature shift of the spectrum by 25–30 nm [in Russian] // Opticheskii Zhurnal. 2018. V. 85. № 10. P. 22–25. http://doi.org/10.17586/1023-5086-2018-85-10-22-25
A. V. Levoshkin, "Effect of the spectral composition of laser diode pumping of Nd3+:YAG lasers on the reduction of pump efficiency for a temperature shift of the spectrum by 25–30 nm," Journal of Optical Technology. 85(10), 614-617 (2018). https://doi.org/10.1364/JOT.85.000614
The change in the absorption efficiency of laser diode emission in the gain medium of Nd3+:YAG lasers is considered for a temperature shift of the pump spectrum by 25–30 nm. It is shown that, for a typical width of the emission spectrum of modern linear laser diode arrays, the minimum efficiency can be significantly increased if the pump spectrum consists of not one but two spectral peaks of different intensities. The increase in the number of peaks to more than two does not lead to any significant improvement in efficiency.
Nd:YAG laser, diode pumping
OCIS codes: 140.3480, 140.3530, 140.5560
References:1. J. C. McCarthy, Y. E. Young, R. C. Day, J. Konves, P. A. Ketteridge, K. Snell, and E. P. Chicklis, “Athermal lightweight diode pumped 1 micron transmitter,” Proc. SPIE 5707, 237–242 (2005).
2. K. Lee, Y. Kim, S. Lee, J. H. Kwon, J. S. Gwak, and J. Yi, “Reducing temperature dependence of the output energy of a quasi-continuous wave diode-pumped Nd:YAG laser,” Appl. Opt. 52(24), 5967–5973 (2013).
3. B. Crepy, G. Glosse, J. Da Cruz, D. Sabourdy, J. Montagne, and L. Nguyen, “Athermal diode-pumped laser designator modules for targeting applications,” Proc. SPIE 8541, 85410R (2012).
4. A. E. Waı˘nshenker, A. V. Vilenskiı˘, A. A. Kazakov, B. G. Lysoı˘, L. K. Mikhaı˘lov, and V. A. Pashkov, “Diode-pumped Nd3+ :YAG laser with Q-switched operation in a wide temperature range without thermal stabilization of pump diodes,” Quantum Electron. 43(2), 114–116 (2013) [Kvant. Elektron. 43(2), 114–116 (2013)].
5. W. Koechner, Solid-State Laser Engineering (Springer-Verlag, Berlin 2006).
6. E. Durand, C. Derycke, L. Boudjemaa, C. Simon-Boisson, L. Roucayrol, R. Perez, B. Faure, and S. Maurice, “Conduction cooled compact laser for the supercam LIBS-Raman instrument,” Proc. SPIE 10562, 105620O (2016).
7. B. W. Schilling, S. R. Chinn, A. D. Hays, L. Goldberg, and C. W. Trussell, “End-pumped 1.5-μm monoblock laser for broad temperature operation, ” Appl. Opt. 45(25), 6607–6615 (2006).
8. L. Goldberg, J. Nettleton, B. Schilling, W. Trussel, and A. Hays, “Compact laser sources for laser designation, ranging and active imaging,” Proc. SPIE 6552, 65520G (2007).
9. W. Xie, X. Ma, X. Zhu, X. Xie, Y. Dong, X. Chen, and W. Chen, “Temperature insensitive high energy Q-switched Nd:YAG slab laser,” Laser Phys. Lett. 14(6), 065803 (2017).