DOI: 10.17586/1023-5086-2018-85-10-50-55
Optical compensation of the Chinese Large Solar Telescope instrumental polarization
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Yao B. X., N. Gu T., Rao C. H. Optical compensation of the Chinese Large Solar Telescope instrumental polarization (Оптическая компенсация инструментальной поляризации в Большом китайском солнечном телескопе (Chinese Large Solar Telescope)) [на англ. яз.] // Оптический журнал. 2018. Т. 85. № 10. С. 50–55. http://doi.org/10.17586/1023-5086-2018-85-10-50-55
Yao B. X., N. Gu T., Rao C. H. Optical compensation of the Chinese Large Solar Telescope instrumental polarization (Оптическая компенсация инструментальной поляризации в Большом китайском солнечном телескопе (Chinese Large Solar Telescope)) [in English] // Opticheskii Zhurnal. 2018. V. 85. № 10. P. 50–55. http://doi.org/10.17586/1023-5086-2018-85-10-50-55
B. X. Yao, N. T. Gu, and C. H. Rao, "Optical compensation of the Chinese Large Solar Telescope instrumental polarization," Journal of Optical Technology. 85(10), 639-643 (2018). https://doi.org/10.1364/JOT.85.000639
One of the main tasks for the Chinese Large Solar Telescope (CLST) is to measure the solar polarization with a high accuracy and sensitivity. However, as a classic Gregorian configuration telescope with an altazimuth mount, the telescope system itself will introduce instrumental polarization. Even though there will be a calibration unit on the second focus, it is still hard to calibrate the instrumental polarization all the time because it will change constantly with the rotating of the telescope. In this paper, we proposed a project to compensate the CLST instrumental polarization with an optical compensator. This compensator which consist of seven flat mirrors can compensate the CLST instrumental polarization for any spectral lines in theory. When the polarimetry is not working, it can be removed from the system. We simulated the project using the software called Advanced System Analysis Program (ASAP). And the result showed that this unit can compensate the instrumental polarization completely without considering the post focal instruments.
Chinese Large Solar Telescope (CLST), instrumental polarization, optical compensation, Muller matrix
OCIS codes: 350.1270, 120.5410, 120.0120, 230.3990
References:1. Hofmann A., Rendtel J. Polarimetry with GREGOR // Proc. SPIE. 4843. Polarimetryin Astronomy. February 1. 2003. 112. doi:10.1117/12.458615.
2. Beck C., Bellot Rubio L.R., Kentischer T.J., Tritschler A., del Toro Iniesta J.C. Two-dimensional solar spectropolarimetry with the KIS/IAA Visible Imaging Polarimeter // Astron. Astrophys. 2010. V. 520(17). P. 249–256.
3. Von Der Lühe O., Schmidt W., Soltau D., Berkefeld T., Kneer F., Staude J. GREGOR: a 1.5 m telescope for solar research // Astron. Nachr. 2001. V. 322(5–6). P. 353–360.
4. Cao W., Ahn K., Goode P.R., Shumko S., Gorceix N., Coulter R. The new solar telescope in big bear: polarimetry II. // ASP Conference Series 437. 2011. P. 345–349 .
5. Keil S.L., Rimmele T.R., Oschmann J., Hubbard R., Warner M., Price R., Dalrymple N. Science goals and development of the advanced technology solar telescope // Proceedings of the International Astronomical Union. 2004. (IAUS223). P. 581–588.
6. Matthews S.A., Collados M., Mathioudakis M., Erdelyi R. T he E uropean S olar T elescope ( EST) // Proc. SPIE. Astronomical Telescopes + Instrumentation. 2016. P. 990809.
7. Rao C., Gu N., Zhu L., Huang J., Li C., Cheng Y., Liu Y., Cao X., Zhang M., Zhang L., Liu H., Wan Y., Xian H., Ma W., Bao H., Zhang X., Guan C., Chen D., Li M., 1.8-m solar telescope in China: Chinese Large Solar Telescope // Journal of Astronomical Telescopes Instruments & Systems. 2015. № 1(2). P. 024001.
8. Almeida J.S., Pillet V.M., Wittmann A.D. The instrumental polarization of a Gregory-Coudé telescope // Solar Physics. 1991. V. 134(1). P. 1–13.
9. Sanchez Almeida J., Martinez Pillet V. Instrumental polarization in the focal plane of telescopes // Astronomy and Astrophysics. 1992. V. 260(2). P. 543–555.
10. Sen A.K., Kakati M. Instrumental polarization caused by telescope optics during wide field imaging // Astronomy & Astrophysics Supplement. 1997. V. 126(1). P. 113–119.
11. Ovelar M.D.J., Roelfsema R., Werkhoven T.V., Snik F., Pragt J., Keller C. Modeling the instrumental polarization of the VLT and E-ELT telescopes with the M&m’s code // Physics Letters B. 2012. V. 8449(3). P. 241–244.
12. Yuan S. Polarization model for the new vacuum solar telescope // ASP Conference Series. 2014. V. 489. P. 297.
13. Sueoka S.R., Harrington D.M. Progress in modeling polarization optical components for the Daniel K. Inouye Solar Telescope // Spie Astronomical Telescopes + Instrumentation. Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation. II. 2016. P. 99126T.
14. Ichimoto K., Lites B., Elmore D., Suematsu, Y., Tsuneta S., Katsukawa Y. Polarization calibration of the Solar Optical Telescope onboard Hinode // Solar Physics. 2008. V. 249(2). P. 233–261.
15. Hofmann A. Polarimetry with GREGOR – an ongoing project // Sun & Geosphere. 2007. № 2. P. 9–12.
16. Schou J., Borrero J.M., Norton A.A., Tomczyk S., Elmore D., Card G.L. Polarization calibration of the helioseismic and magnetic imager (HMI) onboard the solar dynamics observatory (SDO) // Solar Physics. 2012. V. 275(1–2). P. 327–355.