DOI: 10.17586/1023-5086-2018-85-10-70-73
УДК: 539.23
Hybrid beamsplitter coatings with a diamond-like layer on zinc selenide
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Баранов А.Н., Михайлов А.В. Гибридные светоделительные покрытия с алмазоподобным слоем на селениде цинка // Оптический журнал. 2018. Т. 85. № 10. С. 70–73. http://doi.org/10.17586/1023-5086-2018-85-10-70-73
Baranov A.N., Mikhailov A.V. Hybrid beamsplitter coatings with a diamond-like layer on zinc selenide [in Russian] // Opticheskii Zhurnal. 2018. V. 85. № 10. P. 70–73. http://doi.org/10.17586/1023-5086-2018-85-10-70-73
A. N. Baranov and A. V. Mikhaĭlov, "Hybrid beamsplitter coatings with a diamond-like layer on zinc selenide," Journal of Optical Technology. 85(10), 656-659 (2018). https://doi.org/10.1364/JOT.85.000656
A method for the synthesis of beamsplitter coatings with different widths of operating spectral range and different ratios of transmittance T and reflectance R is presented. An example of beamsplitter calculation with the ratio T:R=60%∶40% for zinc selenide optical components is demonstrated in the spectral range of 2–10 μm. It is shown that the introduction of a diamond-like carbon layer with a thickness of not less than 100 nm at the interface with air makes it possible to obtain stable beamsplitter coatings with high mechanical strength and moisture resistance. The average values of transmittance and reflectance are 60.5% and 39.2%, respectively, for the samples in the range of 2–10 μm, and the maximum deviation is 3.8%.
optical coatings, beamsplitter coatings, operational characteristics, diamond-like films
OCIS codes: 310.1620, 310.1860, 310.4165
References:1. M. Schürmann, W. Stöckl, and N. Kaiser, “Metal layer beamsplitters with one dielectric achromatisation layer,” Proc. SPIE 7101, 71011J (2008).
2. M. Degel and E. Gittler, “Multispectral optical coatings are tough, versatile for IR applications,” Photon. Spectra 47(3), 56 (2013).
3. I. S. Gainutdinov, M. Kh. Azamotov, A. N. Galiev, I. Z. Nurullin, S. N. Shusharin, and A. V. Mihaylov, “A hybrid antireflection coating with a diamondlike layer,” J. Opt. Technol. 82(1), 55–57 (2015) [Opt. Zh. 82(1), 70–73 (2015)].
4. A. N. Baranov and L. A. Gubanova, “Design and fabrication of broadband infrared durable antireflection coatings on Ge,” Proc. SPIE 10691, 106911Q (2018).
5. U. Schallenberg, “Design principles for broadband AR coatings,” Proc. SPIE 7101, 710103 (2008).
6. L. I. Epstein, “The design of optical filters,” J. Opt. Soc. Am. 42(11), 806–810 (1952).
7. E. N. Kotlikov, V. A. Ivanov, V. G. Pogareva, and E. V. Khonineva, “Study of optical constants of PbTe and GeTe films,” Opt. Spectrosc. 88(5), 718–720 (2000).
8. Y. Q. Pan and Y. Yin, “Diamond-like carbon films with End-Hall ion source enhanced chemical vapour deposition,” Diamond Relat. Mater. 16(2), 220–224 (2007).
9. Y. Tang, Y. S. Li, Q. Yang, and A. Hirose, “Characterization of hydrogenated amorphous carbon thin films by End-Hall ion beam deposition,” Appl. Surf. Sci. 257, 4699–4705 (2011).
10. A. N. Baranov and A. V. Mikhaı˘lov, “Optical and operational characteristics of diamond-like films deposited using a Hall ion beam source,” J. Opt. Technol. 85(3), 179–181 (2018) [Opt. Zh. 85(3), 69–71 (2018)].
11. R. S. Sokolova and N. A. Pashkova, “Multispectral antireflection coatings for the IR region,” J. Opt. Technol. 69(2), 86–87 (2002) [Opt. Zh. 69(2), 25–27 (2002)].