ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2018-85-11-50-57

УДК: 535.417, 535.317, 778.38

Method for increasing the depth of field of images of flat transparencies reconstructed using synthesized holograms

For Russian citation (Opticheskii Zhurnal):

Корешев С.Н., Смородинов Д.С., Фролова М.А. Метод увеличения глубины резкости изображений плоских транспарантов, восстановленных с помощью синтезированных голограмм // Оптический журнал. 2018. Т. 85. № 11. С. 50–57. http://doi.org/10.17586/1023-5086-2018-85-11-50-57

 

Koreshev S.N., Smorodinov D.S., Frolova M.A. Method for increasing the depth of field of images of flat transparencies reconstructed using synthesized holograms [in Russian] // Opticheskii Zhurnal. 2018. V. 85. № 11. P. 50–57. http://doi.org/10.17586/1023-5086-2018-85-11-50-57

For citation (Journal of Optical Technology):

S. N. Koreshev, D. S. Smorodinov, and M. A. Frolova, "Method for increasing the depth of field of images of flat transparencies reconstructed using synthesized holograms," Journal of Optical Technology. 85(11), 696-702 (2018). https://doi.org/10.1364/JOT.85.000696

Abstract:

The influence of the parameters used in synthesizing hologram projectors on the distribution of complex amplitude in the planes of hologram synthesis and the reconstructed image is considered. A method for increasing the depth of field of the reconstructed images is proposed and investigated. This method is based on the representation of the object wave in the synthesis of a hologram in the form of a superposition of object waves emanating from two identical objects, which are located at different distances from the plane of the hologram synthesis. The work involved mathematical modeling of the processes of synthesis and reconstruction of a hologram for the synthesis of the hologram projectors of two-dimensional binary objects for photolithography.

Keywords:

depth of field, phase difference, phase matching, hologram synthesis, increasing the depth of field, photolithography

Acknowledgements:

The research was supported by the Ministry of Education and Science of the Russian Federation (Minobrnauka) (3.2506.2017/4.6).

OCIS codes: 090.0090

References:

1. F. Clube, S. Gray, D. Struchen, J. Tisserand, S. Malfoy, and Y. Darbellay, “Holographic microlithography,” Opt. Eng. 34(9), 2724–2730 (1995).
2. A. Maiden, R. McWilliam, A. Purvis, S. Johnson, G. L. Williams, N. L. Seed, and P. A. Ivey, “Nonplanar photolithography with computergenerated holograms,” Opt. Lett. 30(11), 1300–1302 (2005).
3. C. Bay, N. Hübner, J. Freeman, and T. Wilkinson, “Maskless photolithography via holographic optical projection,” Opt. Lett. 35(13), 2230–2232 (2010).
4. R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Hollography (Academic, New York, 1971; Mir, Moscow, 1973).
5. M. D. Levenson, K. M. Johnson, V. C. Hanchett, and K. Chiang, “Projection photolithography by wave-front conjugation,” J. Opt. Soc. Am. 71(6), 737–743 (1981).
6. L. Martinez-Leon, P. Clemente, Y. Mori, V. Climent, J. Lancis, and E. Tajahuerce, “Single-pixel digital holography with phase-encoded illumination,” Opt. Express 25(5), 4975–4984 (2017).
7. S. N. Koreshev, O. V. Nikanorov, and D. S. Smorodinov, “Imaging properties of discrete holograms. I. How the discreteness of a holo-gram affects image reconstruction,” J. Opt. Technol. 81(3), 123–127 (2014) [Opt. Zh. 81(3), 14–19 (2014)].
8. Y. Zhang, Q. Lu, and B. Ge, “Elimination of zero-order diffraction in digital off-axis holography,” Opt. Commun. 240(4–6), 261–267 (2004).
9. G. Chen, C. Lin, M. Kuo, and C. Chang, “Numerical suppression of zero-order image in digital holography,” Opt. Express 15(14), 8851–8856 (2007).
10. S. N. Koreshev, O. V. Nikanorov, and D. S. Smorodinov, “Imaging properties of discrete holograms. II. How structural modification of the hologram and a high spatial carrier frequency of the hologram structure that exceeds the Nyquist frequency affects the image reconstruction,” J. Opt. Technol. 81(4), 204–208 (2014) [Opt. Zh. 81(4), 48–53 (2014)].
11. S. N. Koreshev, O. V. Nikanorov, M. A. Frolova, Ya. A. Novitskaya, and R. I. Khisamov, “Methods of increasing the resolving power and depth of field of synthesized hologram-projectors,” J. Opt. Technol. 83(12), 760–764 (2016) [Opt. Zh. 83(12), 62–68 (2016)].
12. M. Francon, Laser Speckle and Applications in Optics (Academic, New York, 1979).
13. M. Born and E. Wolf, Principles of Optics (Pergamon Press, Oxford, 1970).
14. S. N. Koreshev, O. V. Nikanorov, D. S. Smorodinov, and A. D. Gromov, “Synthesizing hologram–projectors for photolithography on nonplanar surfaces,” J. Opt. Technol. 82(2), 90–94 (2015) [Opt. Zh. 82(2), 37–42 (2015)].
15. A. W. Lohmann, “Variable Fresnel zone pattern,” Appl. Opt. 6(9), 1567–1570 (1967).
16. M. D. Greenberg, Advanced Engineering Mathematics, 2nd ed. (Prentice Hall, Upper Saddle River, 1998).
17. S. N. Koreshev, O. V. Nikanorov, and A. D. Gromov, “Method of synthesizing hologram projectors based on breaking down the structure of an object into typical elements, and a software package for implementing it,” J. Opt. Technol. 79(12), 769–774 (2012) [Opt. Zh. 79(12), 30–37 (2012)].
18. S. N. Koreshev, O. V. Nikanorov, and V. P. Ratushny, “Reconstruction of synthesized holograms-Fresnel projectors at angles of incidence of reconstructing wave that exceed the angle of incidence of the reference wave in hologram synthesis,” Opt. Spectrosc. 111(1), 134 (2011) [Opt. Spektrosk. 111(1), 143–148 (2011)].
19. S. N. Koreshev, O. V. Nikanorov, D. S. Smorodinov, and A. D. Gromov, “How the method of representing an object affects the imaging properties of synthesized holograms,” J. Opt. Technol. 82(4), 246–251 (2015) [Opt. Zh. 82(4), 66–73 (2015)].
20. S. N. Koreshev, D. S. Smorodinov, and M. A. Frolova, “Effect of object-discretization period on the depth of field of images reconstructed using synthesized Fresnel hologram-projectors,” J. Opt. Technol. 84(11), 773–776 (2017) [Opt. Zh. 84(11), 69–72].