ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2018-85-11-81-89

УДК: 535.34, 535.016, 532.6

Surface modification of materials using laser-oriented nanostructuring

For Russian citation (Opticheskii Zhurnal):

Каманина Н.В., Лихоманова С.В., Зубцова Ю.А., Кужаков П.В., Зимнухов М.А., Васильев П.Я., Студёнов В.И. Модификация поверхности материалов при использовании лазерного метода ориентированного наноструктурирования // Оптический журнал. 2018. Т. 85. № 11. С. 81–89. http://doi.org/10.17586/1023-5086-2018-85-11-81-89

 

Kamanina N.V., Likhomanova S.V., Zubtsova Yu.A., Kuzhakov P.V., Zimnukhov M.A., Vasiliev P.Ya., Studenov V.I. Surface modification of materials using laser-oriented nanostructuring [in Russian] // Opticheskii Zhurnal. 2018. V. 85. № 11. P. 81–89. http://doi.org/10.17586/1023-5086-2018-85-11-81-89

For citation (Journal of Optical Technology):

N. V. Kamanina, S. V. Likhomanova, Yu. A. Zubtsova, P. V. Kuzhakov, M. A. Zimnukhov, P. Ya. Vasil’ev, and V. I. Studenov, "Surface modification of materials using laser-oriented nanostructuring," Journal of Optical Technology. 85(11), 722-728 (2018). https://doi.org/10.1364/JOT.85.000722

Abstract:

The possibilities of modifying a number of physicochemical properties of the surface of a large group of materials, mainly inorganic optical materials, are considered when performing laser deposition of carbon nanotubes oriented in an electric field with varying strength on the surface of the studied structures. The focus is on the properties of carbon nanotubes such as their low refractive index and high strength. Experimental results are presented, supported by simulations based on molecular dynamics models. Expansion of the field of application of structured materials in spectroscopy, display, laser, and biomedical technology, as well as the aircraft and automotive industries is predicted.

 

 

Acknowledgement:

The research was supported by the Russian Federation Basic Research (10-03-00916 (2010–2012), 13-03-00044 (2013–2015)); Seventh Framework Programme (FP7) Program, Marie Curie International Researchers Exchange Proposal “BIOMOLEC” (2011–2015); National Technological Base Federal Target Program of the project Nanocoating-GOI (2012–2015); Russian-Israeli Adaptation project (2017). Part of the results were presented at the conferences “Applied Optics-2016” (St. Petersburg, November 2016), “GEO-Siberia-2017” (Novosibirsk, April 2017), and RAD-2017 (Serbia-Montenegro) and at seminars at the Petersburg Institute for Nuclear Physics (PIYaF)—Kurchatov Institute (October 2018). The authors are deeply grateful to their colleagues at AO S. I. Vavilov GOI for a thorough discussion of the results and also express their gratitude to Cand. Phys.-Mat. Sciences S. V. Serov for his help in the design of drawings when converting software to the Russian standard. The authors are grateful to D. G. Kvashnin (N. M. Emanuel Institute for Biochemical Physics, RAS, MISiS National Research Technological University) and P. B. Sorokin (Technological Institute for Superhard and New Carbon Materials) for their help in carrying out quantum chemical calculations and supporting the experimental research.

Keywords:

structuring, inorganic materials, laser deposition of oriented carbon nanotubes, spectra, refraction, transmission, microhardness, wetting angle

OCIS codes: 160.4760, 300.6170, 230.3720

References:

1. S. Bhattacharya, S. Banerjee, S. Chattopadhyay, and M. Banerjee, “Spectrophotometric study of complexation of benzoyl acetone with [60]- and [70] fullerenes and some other electron acceptors,” J. Phys. Chem. Lett. 393, 504–510 (2004).
2. Y. Yamamoto, H. Tanaka, and T. Kawa, “Construction of oxide-carbide artificial superlattices using C60-assisted pulsed-laserdeposition technique,” J. Cryst. Growth 265, 198–203 (2004).
3. Y. Xu and G. Xiong, “Third-order optical nonlinearity of semiconductor carbon nanotubes for third harmonic generation,” J. Phys. Chem. Lett. 388, 330–336 (2004).
4. D. Yu, K. Park, M. Durstock, and L. Dai, “Fullerene-grafted graphene for efficient bulk heterojunction polymer photovoltaic devices,” J. Phys. Chem. Lett. 2, 1113–1118 (2011).
5. E. Taranko, M. Wiertel, and R. Taranko, “Transient electron transport properties of multiple quantum dots systems,” J. Appl. Phys. 111, 023711 (2012).
6. M. Ciszewski, A. Mianowski, and N. Ginter, “Preparation and electro-chemical properties of sodium-reduced graphene oxide,” J. Mater. Sci. Mater. Electron. 24, 3382–3386 (2013).

7. V. Asokan, D. Velauthapillai, R. Lovlie, and D. N. Madsen, “Effect of substrate and catalyst on the transformation of carbon black into nanotubes,” J. Mater. Sci. Mater. Electron. 24, 3231–3239 (2013).
8. X. Xi, Q. Ma, M. Yang, X. Dong, J. Wang, W. Yu, and G. Liu, “Janus nanofiber: a new strategy to achieve simultaneous enhanced magnetic-photoluminescent bifunction,” J. Mater. Sci. Mater. Electron. 25, 4024–4032 (2014).
9. E. C. Neyts, “The role of ions in plasma catalytic carbon nanotube growth: a review,” Front. Chem. Sci. Eng. 9(2), 154–162 (2015).
10. X. Guo, W. Wang, H. Nan, Y. Yu, J. Jiang, W. Zhao, J. Li, Z. Zafar, N. Xiang, Z. Ni, W. Hu, Y. You, and Z. Ni, “High-performance graphene photodetector using interfacial gating,” Optica 3(10), 1066–1070 (2016).
11. N. V. Kamanina, “Mechanisms of optical limiting in p-conjugated organic system: fullerene-doped polyimide,” Synth. Met. 127(1–3), 121–128 (2002).
12. N. V. Kamanina, “Fullerene-containing dispersed nematic liquid-crystal structures: dynamic characteristics and self-organization processes,” Usp. Fiz. Nauk 175(4), 445–454 (2005).
13. N. V. Kamanina and D. P. Uskokovic, “Refractive index of organic systems doped with nano-objects,” Mater. Manuf. Processes 23, 552–556 (2008).
14. N. V. Kamanina, S. V. Serov, N. A. Shurpo, S. V. Likhomanova, D. N. Timonin, P. V. Kuzhakov, N. N. Rozhkova, I. V. Kityk, K. J. Plucinski, and D. P. Uskokovic, “Polyimide-fullerene nanostructured materials for nonlinear optics and solar energy applications,” J. Mater. Sci. Mater. Electron. 23(8), 1538–1542 (2012).
15. N. V. Kamanina, Yu. A. Zubtcova, A. A. Kukharchik, C. Lazar, and I. Rau, “Control of the IR-spectral shift via modification of the surface relief between the liquid crystal matrixes doped with the lanthanide nanoparticles and the solid substrate,” Opt. Express 24(2), A270 (2016).
16. N. V. Kamanina and P. Ya. Vasil’ev, “Optical coating based on carbon nanotubes for optical instrumentation and nanoelectronics,” Russian patent 2355001 (RU 2355001 C2) (2009).
17. N. V. Kamanina, P. Ya. Vasil’ev, and V. I. Studenov, “Optical coating based on carbon nanotubes oriented in an electric field for optical instrumentation, micro- and nanoelectronics with elimination of the solid substrate—coating interface,” Russian patent 2405177 (RU 2405177 C2) (2010).
18. N. V. Kamanina, A. A. Kukharchik, P. V. Kuzhakov, Yu. A. Zubtsova, R. O. Stepanov, and N. V. Baryshnikov, “Modification of a conductive ITO layer by carbon nanotubes for aligning liquid crystals in electro-optic devices for optical data conversion,” Zhidk. Krist. Ikh Prakt. Ispol’z. 15(3), 109–118 (2015).
19. S. Plimpton, “Fast parallel algorithms for short-range molecular dynamics,” J. Comput. Phys. 117, 1–19, 1995.
20. J. Tersoff, “Modeling solid-state chemistry: interatomic potentials for multicomponent systems,” Phys. Rev. B. 39, 5566–5568 (1989).
21. Z.-P. Yang, L. Ci, J. A. Bur, S.-Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett. 8(2), 446–451 (2007).
22. S. Namilae, N. Chandra, and C. Shet, “Mechanical behavior of functionalized nanotubes,” J. Phys. Chem. Lett. 387, 247–252 (2004).
23. N. V. Kamanina, K. Yu. Bogdanov, P. Ya. Vasil’ev, and V. I. Studenov, “Nanotubes deposited on a surface increase its strength and transparency,” Zh. Ross. Nanotekhnol. 4, 9–10 (2009).
24. N. V. Kamanina, P. Ya. Vasil’ev, V. I. Studenov, and K. Yu. Bogdanov, “Enhancing the mechanical surface strength of “soft” materials for the UV and IR ranges and increasing their transmission spectrum: model MgF 2 -nanotube system,” J. Opt. Technol. 77(2) 145–147 (2010) [Opt. Zh. 77(2), 84–86 (2010)].
25. N. V. Kamanina, K. Yu. Bogdanov, P. Ya. Vasil’ev, V. I. Studeonov, A. E. Pujsha, A. V. Shmidt, A. V. Krestinin, and F. Kajzar, “Nano-objects—containing structures for aerospace and laser switching systems,” Nonlinear Opt. Quantum Opt. 40, 277–285 (2010).
26. A. A. Vasil’ev, D. Kasasent, I. N. Kompanets, and A. V. Parfenov, Spatial Light Modulators (Radio i Svyaz’, Moscow, 1987).
27. N. V. Kamanina and N. A. Vasilenko, “Influence of operating conditions and of interface properties on dynamic characteristics of liquid-crystal spatial light modulators,” Opt. Quantum Electron. 29(1), 1–9 (1997).
28. E. S. Lee, P. Vetter, T. Miyashita, and T. Uchida, “Orientation of polymer molecules in rubbed alignment layer and surface anchoring of liquid crystals,” Jpn. J. Appl. Phys. Part 2 32(9), L339–L341 (1993).
29. N. V. Kamanina and V. N. Kidalov, “The study of the erythrocyte alignment effect in a nematic liquid-crystalline medium,” Pis’ma Zh. Tekh. Fiz. 22(14), 39–42 (1996).
30. N. V. Kamanina, “Difference (and interconnection) between the erythrocyte orientation effect and Fröhlich’s electric vibrations,” Pis’ma Zh. Tekh. Fiz. 23(23), 7–15 (1997).
31. N. V. Kamanina, S. V. Likhomanova, A. A. Kamanin, Yu. A. Zubtsova, A. Pawlicka, G. Praveen, and S. Thomas, “Orientation of erythrocytes and other bio-objects in modified liquid crystal cells,” Zhidk. Krist. Ikh Prakt. Ispol’z. 17(1), 74–82 (2017).
32. N. V. Kamanina, S. V. Likhomanova, Yu. A. Zubtcova, A. A. Kamanin, and A. Pawlicka, “Functional smart dispersed liquid crystals for nano- and biophotonic applications: nanoparticles-assisted optical bioimaging,” J. Nanomater. 2016(1–4), 1–9 (2016).