ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2018-85-11-90-100

УДК: 666.3, 536.413, 539.26

Structural, optical, and luminescence properties of ZnO:Ga optical scintillation ceramic

For Russian citation (Opticheskii Zhurnal):

Горохова Е.И., Еронько С.Б., Орещенко Е.А., Сандуленко А.В., Родный П.А., Черненко К.А., Веневцев И.Д., Кульков А.М., Muktepavela F., Boutachkov P. Структурные, оптические и люминесцентные свойства сцинтилляционной оптической керамики ZnO:Ga // Оптический журнал. 2018. Т. 85. № 11. С. 90–100. http://doi.org/10.17586/1023-5086-2018-85-11-90-100

 

Gorokhova E.I., Eronko S.B., Oreshchenko E.A., Sandulenko A.V., Rodniy P.A., Chernenko K.A., Venevtsev I.D., Kulkov A.M., Muktepavela F., Boutachkov P. Structural, optical, and luminescence properties of ZnO:Ga optical scintillation ceramic [in Russian] // Opticheskii Zhurnal. 2018. V. 85. № 11. P. 90–100. http://doi.org/10.17586/1023-5086-2018-85-11-90-100

For citation (Journal of Optical Technology):

E. I. Gorokhova, S. B. Eron’ko, E. A. Oreshchenko, A. V. Sandulenko, P. A. Rodnyĭ, K. A. Chernenko, I. D. Venevtsev, A. M. Kul’kov, Faina Muktepavela, and Plamen Boutachkov, "Structural, optical, and luminescence properties of ZnO:Ga optical scintillation ceramic," Journal of Optical Technology. 85(11), 729-737 (2018). https://doi.org/10.1364/JOT.85.000729

Abstract:

This paper discusses the characteristics of ZnO and ZnO:Ga ceramics fabricated by uniaxial hot pressing. The short-wavelength transmission limit of zinc oxide ceramics is in the 370-nm region; the long-wavelength limit is determined by the free-charge-carrier concentration and lies in the interval from 5 to 9 μm. The total transmittance of such ceramics in the visible and near-IR regions is about 70% when the sample is 0.5 mm thick. The luminescence spectrum is represented by a broad emission band with maximum at 580 nm, having a defect nature. The introduction of 0.03–0.1 mass % gallium into the zinc oxide structure inhibits grain growth and increases the free-charge-carrier concentration to 3.44×1019  cm−3. As the gallium concentration increases in the range 0.05–0.1 mass % in a ceramic of composition ZnO:Ga, the defect luminescence band is suppressed and a characteristic exciton luminescence is formed with a maximum corresponding to 389 nm and a damping time constant of 1.1 ns.

Keywords:

ZnO:Ga, uniaxial hot pressing, exciton luminescence, scintillation ceramics

Acknowledgements:

The research was supported by the Russian Foundation for Basic Research (RFBR) (18-52-76002).

OCIS codes: 160.2540, 160.4760

References:

1. U. Orgur, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshnikov, S. Dogan, V. Avrutin, S.-J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98, 041301 (2005).
2. T. Makino, Y. Segawa, S. Yoshida, A. Tsukazak, A. Ohtomo, and M. Kawasaki, “Gallium concentration dependence of room-temperature near-band-edge luminescence in n-type ZnO:Ga,” Appl. Phys. Lett. 85, 759–761 (2004).
3. E. D. Bourret-Courchesne, S. E. Derenzo, and M. J. Weber, “Development of ZnO:Ga as an ultra-fast scintillator,” Nucl. Instrum. Methods Phys. Res. A 601, 358–363 (2009).
4. J. C. Cooper, D. S. Koltick, J. T. Mihalzo, and J. S. Neal, “Evaluation of ZnO(Ga) coatings as alpha particle transducers within a neutron generator,” Nucl. Instrum. Methods Phys. Res. A 505(1–2), 498–501 (2003).
5. J. S. Neal, N. C. Giles, X. Yang, R. A. Wall, K. B. Ucer, R. T. Williams, D. J. Wisniewski, L. A. Boatner, V. Rengarajan, and B. Nemeth, “Evaluation of melt-grown, ZnO single crystals for use as alpha-particle detectors,” IEEE Trans. Nucl. Sci. 55, 1397–1403 (2008).
6. E. I. Gorokhova, G. V. Anan’eva, V. A. Demidenko, P. A. Rodnyi, I. V. Khodyuk, and E. D. Bourret-Courchesne, “Optical, luminescence, and scintillation properties of ZnO and ZnO:Ga ceramics,” J. Opt. Technol. 75(11), 741–746 (2008) [Opt. Zh. 75(11), 66–72 (2008)].
7. J. S. Neal, D. M. DeVito, B. L. Armstrong, M. Hong, B. Kesanli, X. Yang, N. C. Giles, J. Y. Howe, J. O. Ramey, D. J. Wisniewski, M. Wisniewska, Z. A. Munir, and L. A. Boatner, “Investigation of ZnO-based polycrystalline ceramic scintillators for use as α-particle detectors,” IEEE Trans. Nucl. Sci. 56, 892–898 (2009).
8. K. A. Chernenko, E. I. Gorokhova, S. B. Eron’ko, A. V. Sandulenko, I. D. Venevtsev, H. Wieczorek, and P. A. Rodnyi, “Structural, optical and luminescent properties of ZnO:Ga and ZnO:In ceramics,” IEEE Trans. Nucl. Sci. 65(8), 2196–2202 (2018).
9. J. A. R. Márquez, C. M. B. Rodríguez, C. M. Herrera, E. R. Rosas, O. Z. Angel, and O. T. Pozos, “Effect of surface morphology of ZnO electrodeposited on photocatalytic oxidation of methylene blue dye. Part I: Analytical study,” Int. J. Electrochem. Sci. 6, 4059–4069 (2011).
10. K. A. Chernenko, S. B. Mikhrin, H. Wieczorek, C. R. Ronda, and P. A. Rodnyı˘, “Source of rectangular X-ray pulses for studying scintillators,” Tech. Phys. Lett. 41(10), 971–973 (2015) [Pis’ma Zh. Tekh. Fiz. 41(20), 1–7 (2015)].
11. P. A. Rodnyi, S. B. Mikhrin, A. N. Mishin, and A. V. Sidorenko, “Small-size pulsed X-ray source for measurements of scintillator decay time constants,” IEEE Trans. Nucl. Sci. 48(6), 2340–2343 (2001).
12. A. R. Kaul, O. Yu. Gorbenko, A. N. Botev, and L. I. Burova, “MOCVD of pure and Ga-doped epitaxial ZnO,” Superlattices Microstruct. 38, 272–282 (2005).
13. S. Chen, G. Carraro, D. Barreca, A. Sapelkin, W. Chen, X. Huang, Q. Cheng, F. Zhange, and R. Binions, “Aerosol-assisted chemical vapour deposition of Ga-doped ZnO films for energy efficient glazing: effects of doping concentration on the film-growth behaviour and opto-electronic properties,” J. Mater. Chem. A 3, 13039–13049 (2015).
14. R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A 32, 751–767 (1976).
15. E. I. Gorokhova, S. B. Eron’ko, A. M. Kul’kov, E. A. Oreshchenko, K. L. Simonova, K. A. Chernenko, I. D. Venevtsev, P. A. Rodnyı˘, K. P. Lott, and H. Wieczorek, “Development and study of ZnO: in optical scintillation ceramic,” J. Opt. Technol. 82(12), 837–842 (2015) [Opt. Zh. 82(12), 78–85 (2015)].
16. S. S. Gorelik, Recrystallization of Metals and Alloys (Metallurgiya, Moscow, 1978).
17. N. A. Vorob’eva, “Nanocrystalline ZnO(M) (M = Ga, In) for gas sensors and transparent electrodes,” Candidate for Chemical Sciences Dissertation (Moscow State University, 2015).
18. E. V. Kortunova, N. G. Nikolaeva, P. P. Chvanski, V. V. Maltsev, E. A. Volkova, E. V. Koporulina, N. I. Leonyuk, and T. F. Kuech, “Hydrothermal synthesis of improved ZnO crystals for epitaxial growth of GaN thin films,” J. Mater. Sci. 43, 2336–2341 (2008).
19. I. P. Kuz’mina and V. P. Nikitenko, Zinc Oxide—Production and Optical Properties (Nauka, Moscow, 1984).
20. P. Saadatkia, G. Ariyawansa, K. D. Leedy, D. C. Look, L. A. Boatner, and F. A. Selim, “Fourier transform infrared spectroscopy measurements of multiphonon and free-carrier absorption in ZnO,” J. Electronic Mat. 45(12), 6329–6336 (2016).
21. X. Yang, “Electrical and optical properties of zinc oxide for scintillator applications,” Dissertation for degree D.Ph. in Physics (West Virginia University, Morgantown, WV, 2008).
22. T. M. Borseth, B. G. Svensson, and A. Yu. Kuznetsov, “Identification of oxygen and zinc vacancy optical signals in ZnO,” Appl. Phys. Lett. 89, 262112 (2006).
23. C. Ton-That, L. Weston, and M. R. Phillips, “Characteristics of point defects in the green luminescence from Zn and O-rich ZnO,” Phys. Rev. B 86, 115205 (2012).
24. J. D. Ye, S. L. Gu, F. Qin, S. M. Zhu, S. M. Liu, X. Zhou, W. Liu, L. Q. Hu, R. Zhang, Y. Shi, and Y. D. Zheng, “Correlation between green luminescence and morphology evolution of ZnO films,” Appl. Phys. A 81, 759–762 (2005).
25. Y. Y. Tay, T. T. Tan, F. Boey, M. H. Liang, J. Ye, Y. Zhao, T. Norby, and S. Li, “Correlation between the characteristic green emissions and specific defects of ZnO,” Phys. Chem. Chem. Phys. 12, 2373–2379 (2010).
26. V. Khranovskyy, U. Grossner, V. Lazorenko, G. Lashkarev, B. G. Svensson, and R. Yakimova, “Conductivity increase of ZnO:Ga films by rapid thermal annealing,” Superlattices Microstruct. 42, 379–386 (2007).
27. K. A. Chernenko, O. G. Klimova, E. I. Gorokhova, G. G. Klimov, A. V. Semencha, and P. A. Rodnyi, “The effect of annealing on spectra and decay time of X-ray luminescence of zinc oxide powders,” IOP Conf. Ser.: Mater. Sci. Eng. 49, 012028 (2013).
28. Q. Li, X. Liu, M. Gu, S. Huang, J. Zhang, C. Ni, Y. Hu, Q. Wu, and S. Zhao, “X-ray excited luminescence of Ga- and In-doped ZnO microrods by annealing treatment,” Superlattices Microstruct. 98, 351–358 (2016).
29. Q. Li, X. Liu, M. Gu, F. Li, J. Zhang, Q. Wu, S. Huang, and S. Liu, “Large enhancement of X-ray excited luminescence in Ga-doped ZnO-nanorod arrays by hydrogen annealing,” Appl. Surf. Sci. 433, 815–820 (2018).
30. P. Rodnyi, K. Chernenko, O. Klimova, V. Galkin, A. Makeenko, E. Gorokhova, D. Buettner, W. Keur, and H. Wieczorek, “Influence of annealing on the scintillation properties of zinc oxide powders and ceramics,” Radiat. Meas. 90, 136–139 (2016).
31. P. Boutachov, A. Reiter, B. Walasek-Hohne, E. Gorokhova, and P. Rodnyi, “Radiation hardness investigation of ZnO(Ga) and ZnO(In) with heavy ion beams,” in Abstracts of SCINT 2017 14th International Conference on Scintillating Materials and Their Applications, 2017.