DOI: 10.17586/1023-5086-2018-85-12-42-48
УДК: 543.421
Selection of a photodetector for atomic absorption spectrometers with a two-stage probe atomizer
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Хайбуллин Р.Р., Ирисов Д.С., Салихова О.Б., Захаров Ю.А. Выбор фотоприёмника для атомно-абсорбционных спектрометров с двухстадийным зондовым атомизатором // Оптический журнал. 2018. Т. 85. № 12. С. 42–48. http://doi.org/10.17586/1023-5086-2018-85-12-42-48
Khaybullin R.R., Irisov D.S., Salikhova O.B., Zakharov Yu.A. Selection of a photodetector for atomic absorption spectrometers with a two-stage probe atomizer [in Russian] // Opticheskii Zhurnal. 2018. V. 85. № 12. P. 42–48. http://doi.org/10.17586/1023-5086-2018-85-12-42-48
R. R. Khaĭbullin, D. S. Irisov, O. B. Salikhova, and Yu. A. Zakharov, "Selection of a photodetector for atomic absorption spectrometers with a two-stage probe atomizer," Journal of Optical Technology. 85(12), 774-779 (2018). https://doi.org/10.1364/JOT.85.000774
A two-stage graphite atomizer with an independently heated tungsten probe has been investigated by shadow spectral visualization, which is a promising method for analyzing the direct atomic absorption of complex substances. Fall-offs in optical density of the formed Ag, Fe, and Al vapors and smoke are measured. The dependences of the shape and size of the analytical pulses of absorption on the size of the photometric zone in a graphite furnace, and on the photodetector type (multipixel photodetectors with spatial resolution and a simple photomultiplier), are established. It is shown that the multipixel photodetectors recommended earlier for one-stage atomization exhibit some advantages. However, for analytical purposes, this probe atomizer can be used successfully with a photomultiplier or photodiode.
atomic absorption spectrometry, graphite atomizer, probe atomization, shadow spectral visualization, photodetector
Acknowledgements:The research was supported by the Program of the foundation for assistance to small businesses in the scientific and technical sphere "Start" and the grant No. 063100027 from the company BP.
OCIS codes: 300.1030, 300.6210, 040.5160
References:1. A. A. Pupyshev, Atomic Absorption Spectral Analysis (Tekhnosfera, Moscow, 2009).
2. B. Welz, H. Becker-Ross, S. Florek, and U. Heitmann, High-Resolution Continuum Source AAS: The Better Way to Do Atomic Absorption Spectrometry (Wiley-VCH, Berlin, 2005).
3. A. Kh. Gilmutdinov, A. V. Voloshin, and K. Yu. Nagulin, “Spatially resolved atomic absorption spectrometry,” Russ. Chem. Rev. 75(4), 303–315 (2006) [Usp. Khim. 75(4), 339–353 (2006)].
4. “Methods for measuring the mass fraction of copper and zinc in food products and food raw materials by electrothermal atomic absorption spectrometry: methodical instructions,” MUK 4.1.991-00 (Federal Center of State Sanitary and Epidemiological Supervision of the Ministry of Health of Russia, Moscow, 2001).
5. Yu. A. Zakharov, R. R. Khaı˘bullin, and D. S. Irisov, “Probe for spectral analysis of substances and method of its application,” Russian patent, 2607670 (2017).
6. R. R. Khaı˘bullin, Yu. A. Zakharov, and D. S. Irisov, “Electrothermal atomizer for spectral analysis of samples,” Russian patent, 2652531 (2018).
7. Yu. A. Zakharov, R. R. Khaı˘bullin, D. S. Irisov, M. F. Sadykov, and A. R. Gaı˘nutdinov, “Hardware-software complex for atomic absorption spectrometry with multistage probe atomization,” Nauchn. Priborostr. 23(4), 104–111 (2013).
8. Yu. A. Zakharov, O. B. Kokorina, A. V. Voloshin, and A. A. Sevast’yanov, “The spatial structure of the absorbing vapors in a graphite transverse heating atomizer with a probe,” Opt. Spectrosc. 100(6), 881–887 (2006) [Opt. Spektrosk. 100(6), 956–963 (2006)].
9. A. K. Gilmutdinov, A. V. Voloshin, and Y. A. Zakharov, “Shadow spectral imaging of absorbing layers in a transversely heated graphite atomizer, Part 1. Analyte atoms,” Spectrochim. Acta 60B, 511–518 (2005).
10. A. K. Gilmutdinov, A. V. Voloshin, and Y. A. Zakharov, “Shadow spectral imaging of absorbing layers in a transversely heated graphite atomizer, Part 2. Molecules and condensed-phase species,” Spectrochim. Acta 60B, 1423–1431 (2005).
11. Yu. A. Zakharov, D. S. Irisov, R. R. Khaı˘bullin, and I. V. Chistyakov, “Sample conversion at two-stage probe atomization in a graphite furnace for atomic absorption spectrometry,” Anal. Kontrol 19(1), 32–39 (2015).
12. M. Lamourex, C. Chakrabarti, C. Hutton, A. Gilmutdinov, Yu. Zakharov, and C. Gregory, “Mechanism of aluminium spike formation and dissipation in electrothermal atomic absorption spectrometry,” Spectrochim. Acta 50B(14), 1847–1867 (1995).
13. J. A. Holcombe, D. L. Styris, and J. D. Harris, “Mass spectrometric investigations of aluminum oxide reduction by gaseous aluminum carbides in electrothermal atomization,” Spectrochim. Acta 46B(5), 629–639 (1991).
14. Yu. A. Zakharov, A. Kh. Gil’mutdinov, and O. B. Kokorina, “Electrothermal atomization of substances with fractional condensation of the element being detected on the probe,” Zh. Prikl. Spektrosk. 72(1), 124–128 (2005).
15. A. K. Gilmutdinov, Y. A. Zakharov, and A. V. Voloshin, “Shadow spectral filming: a method of investigating electrothermal atomization, Part 3. Dynamics of longitudinal propagation of an analyte within graphite furnaces,” J. Anal. At. Spectrom. 8, 387–395 (1993).
16. G. A. Gavrilov and G. Yu. Sotnikova, “Charge-coupled devices in the technique of physical experiment,” Nauchno-tekh. Vedomosti SPbGPU 4, 220–227 (2010).
17. NPK Photonica cameras and accessories, http://www.npk-photonica.ru/images/katalog-po-kameram_21-06-16-pdf114251.pdf.