DOI: 10.17586/1023-5086-2018-85-12-60-68
УДК: 631.421
Comparison of the effectiveness of various ways of preprocessing spectrometric data in order to predict the concentration of organic soil carbon
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Чинилин А.В., Савин И.Ю. Сравнение эффективности различных методов предварительной обработки данных спектрометрирования для прогнозирования содержания органического углерода почв // Оптический журнал. 2018. Т. 85. № 12. С. 60–68. http://doi.org/10.17586/1023-5086-2018-85-12-60-68
Chinilin A.V., Savin I.Yu. Comparison of the effectiveness of various ways of preprocessing spectrometric data in order to predict the concentration of organic soil carbon [in Russian] // Opticheskii Zhurnal. 2018. V. 85. № 12. P. 60–68. http://doi.org/10.17586/1023-5086-2018-85-12-60-68
A. V. Chinilin and I. Yu. Savin, "Comparison of the effectiveness of various ways of preprocessing spectrometric data in order to predict the concentration of organic soil carbon," Journal of Optical Technology. 85(12), 789-795 (2018). https://doi.org/10.1364/JOT.85.000789
This paper discusses the effectiveness of using a number of methods of preprocessing spectrometric data in the 325–1075-nm wavelength range in order to predict the concentration of organic soil carbon. Methods of preprocessing spectral data (moving-average filtering, Savitzky–Golay smoothing, calculating the first and second derivatives, and scaling) were consecutively applied to the spectral data of soils (with their natural texture and pulverized) to increase the reliability and effectiveness of the models. According to the criterion of maximizing the determination coefficient and minimizing the rms error as a cross check, the best method of predicting organic soil carbon turned out to be partial-least-squares regression with computation of the first derivatives of the original spectra (Rcv2=0.758RMSEcv=0.492).
soils spectroscopy, spectral reflectance, prediction, regression
Acknowledgements:These studies were carried out with the support of Grant 18-016-00052 of the Russian Foundation for Basic Research, using the equipment of the Center for Collective Usage: “The functions and properties of soils and soil cover,” V. V. Dokuchaev Soil Institute.
OCIS codes: 280.4788, 300.6190, 300.6340, 300.6490, 300.6550
References:1. V. M. Semenov and B. M. Kogut, Organic Soil Material (GEOS, Moscow, 2015).
2. B. A. Borisov and N. F. Ganzhara, The Organic Material of Soils (Genetic and Agronomic Evaluation) (Izd. RGAU-MSKhA, Moscow, 2015).
3. A. B. McBratney, D. J. Field, and A. Koch, “The dimensions of soil security,” Geoderma 213, 203–213 (2014).
4. B. Minasny and A. B. McBratney, “Regression rules as a tool for predicting soil properties from infrared reflectance spectroscopy,” Chemom. Intell. Lab. Syst. 94(1), 72–79 (2008).
5. R. A. Viscarra Rossel, D. J. J. Walvoort, A. B. McBratney, L. J. Janik, and J. O. Skjemstad, “Visible, near-infrared, mid-infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties,” Geoderma 131(1–2), 59–75 (2006).
6. R. A. V. Rossel and T. Behrens, “Using data mining to model and interpret soil diffuse-reflectance spectra,” Geoderma 158(1–2), 46–54 (2010).
7. E. Ben-Dor, C. Ong, and I. C. Lau, “Reflectance measurements of soils in the laboratory: standards and protocols,” Geoderma 245–246, 112–124 (2015).
8. R. A. A. Viscarra Rossel, T. Behrens, E. Ben-Dor, J. A. M. Demattê, V. Adamchuk, and A. D. D. Bayer, “A global spectral library to characterize the world’s soil,” Earth-Sci. Rev. 155, 198–230 (2016).
9. A. C. Dotto, R. S. D. Dalmolin, S. Grunwald, A. ten Caten, and W. Pereira Filho, “Two preprocessing techniques to reduce model covariables in soil property predictions by Vis–NIR spectroscopy,” Soil Tillage Res. 172, 59–68 (2017).
10. A. Gholizadeh, L. Borůvka, M. M. Saberioon, J. Kozák, R. Vašát, and K. Němeček, “Comparing different data-preprocessing methods for monitoring soil heavy metals based on soil spectral features,” Soil Water Res. 10(4), 218–227 (2016).
11. D. S. Orlov, N. I. Sukhanova, and M. S. Rozanova, Spectral Reflectivity of Soils and Their Components (Izd. Mosk. Univ., Moscow, 2001).
12. A. Volkan Bilgili, H. M. van Es, F. Akbas, A. Durak, and W. D. Hively, “Visible–near-infrared reflectance spectroscopy for assessment of soil properties in a semi-arid area of Turkey,” J. Arid Environ. 74(2), 229–238 (2010).
13. G. M. Vasques, S. Grunwald, and J. O. Sickman, “Comparison of multivariate methods for inferential modeling of soil carbon using visible/near-infrared spectra,” Geoderma 146(1–2), 14–25 (2008).
14. X. Peng, T. Shi, A. Song, Y. Chen, and W. Gao, “Estimating soil organic carbon using VIS/NIR spectroscopy with SVMR and SPA methods,” Remote Sens. 6(4), 2699–2717 (2014).
15. J. D. Muñoz and A. Kravchenko, “Soil carbon mapping using on-the-go near-infrared spectroscopy, topography and aerial photographs,” Geoderma 166(1), 102–110 (2011).
16. A. C. Dotto, R. S. D. Dalmolin, A. ten Caten, and S. Grunwald, “A systematic study on the application of scatter-corrective and spectral-derivative preprocessing for multivariate prediction of soil organic carbon by Vis–NIR spectra,” Geoderma 314, 262–274 (2018).
17. M. Conforti, A. Castrignanò, G. Robustelli, F. Scarciglia, M. Stelluti, and G. Buttafuoco, “Laboratory-based Vis–NIR spectroscopy and partial least-square regression with spatially correlated errors for predicting spatial variation of soil organic matter content,” CATENA 124, 60–67 (2015).
18. N. M. Knox, S. Grunwald, M. L. McDowell, G. L. Bruland, D. B. Myers, and W. G. Harris, “Modelling soil carbon fractions with visible near-infrared (VNIR) and mid-infrared (MIR) spectroscopy,” Geoderma 239–240, 229–239 (2015).
19. B. Kuang, Y. Tekin, and A. M. Mouazen, “Comparison between artificial neural network and partial least squares for on-line visible and near-infrared spectroscopy measurement of soil organic carbon, pH and clay content,” Soil Tillage Res. 146, 243–252 (2015).
20. A. Bayer, A. Bachmann, A. Muller, and H. Kaufmann, “A comparison of feature-based MLR and PLS regression techniques for the prediction of three soil constituents in a degraded South African Ecosystem,” Appl. Environ. Soil Sci. 2012, 1–20 (2012).
21. C.-W. Chang, D. A. Laird, M. J. Mausbach, and C. R. Hurburgh, “Near-infrared reflectance spectroscopy—principal-components regression analyses of soil properties,” Soil Sci. Soc. Am. J. 65(2), 480 (2001).
22. Y. Wang, T. Huang, J. Liu, Z. Lin, and S. Li, “Soil pH value, organic matter and macronutrients contents prediction using optical diffuse reflectance spectroscopy,” Comput. Electron. Agric. 111, 69–77 (2015).
23. F. S. Terra, J. A. M. M. Demattê, and R. A. Viscarra Rossel, “Spectral libraries for quantitative analyses of tropical Brazilian soils: comparing vis–NIR and mid-IR reflectance data,” Geoderma 255–256, 81–93 (2015).
24. G. V. Dobrovol’skiı˘ and I. S. Urusevskaya, Geography of Soils (MGU, Moscow, 2015).
25. Classification and Diagnostics of Soils of the USSR (Kolos, Moscow, 1977).
26. X.-L. Xie, X.-Z. Pan, and B. Sun, “Visible and near-infrared diffuse reflectance spectroscopy for prediction of soil properties near a copper smelter,” Pedosphere 22(3), 351–366 (2012).
27. A. Savitzky and M. J. E. Golay, “Smoothing and differentiation of data by simplified least-squares procedures,” Analyt. Chem. 36(8), 1627–1639 (1964).
28. R Core Team, “R: A language and environment for statistical computing,” R Foundation for Statistical Computing, Vienna, Austria, 2018, https://www.R-project.org/.
29. M. Kuhn, “Building predictive models in R using the caret package,” J. Stat. Softw. 28(5) (2008).
30. E. Yu. Prudnikova and I. Yu. Savin, “Study of the optical properties of an exposed soil surface,” J. Opt. Technol. 83(10), 642–647 (2016) [Opt. Zh. 83(10), 79–86 (2016)].
31. I. Yu. Savin and E. Yu. Prudnikova, “Concerning the optimum time of a satellite picture for the cartography of topsoils,” Byull. Pochven. Inst. (74), 66–77 (2014).
32. P. Lagacherie, F. Baret, J.-B. Feret, J. Madeira Netto, and J. M. Robbez-Masson, “Estimation of soil clay and calcium carbonate using laboratory, field and airborne hyperspectral measurements,” Remote Sens. Environ. 112(3), 825–835 (2008).