DOI: 10.17586/1023-5086-2018-85-12-08-14
УДК: 621.373.8
Increasing the peak power of a pulsed laser source using optical delay lines
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Алексеев В.А., Перминов А.С., Юран С.И. Повышение пиковой мощности источника импульсного лазерного излучения с применением оптических линий задержки // Оптический журнал. 2018. Т. 85. № 12. С. 8–14. http://doi.org/10.17586/1023-5086-2018-85-12-08-14
Alekseev V.A., Perminov A.S., Yuran S.I. Increasing the peak power of a pulsed laser source using optical delay lines [in Russian] // Opticheskii Zhurnal. 2018. V. 85. № 12. P. 8–14. http://doi.org/10.17586/1023-5086-2018-85-12-08-14
V. A. Alekseev, A. S. Perminov, and S. I. Yuran, "Increasing the peak power of a pulsed laser source using optical delay lines," Journal of Optical Technology. 85(12), 746-751 (2018). https://doi.org/10.1364/JOT.85.000746
We consider the implementation of a patented source of pulsed laser radiation, which allows economical use of power owing to the original structure of a parallel set of optical delay lines and the addition of the amplitudes of the pulses of the input laser radiation. The results of a computer experiment for different numbers of switching channels with the determination of the predicted output peak power of the laser source are presented. To assess the radiation source, the concept of system efficiency is introduced as the ratio of the output peak power to the number of channels of delay lines. The results of the calculations are presented in the form of efficiency graphs for different numbers of channels, considering losses in the optical fiber lines of the optical delay. The proposed source of pulsed laser radiation can potentially be used in optical communication lines, laser data systems, and medical devices.
optical switch, peak power of laser radiation, optical fiber lines of delay, connector, fiber losses
OCIS codes: 140.0140
References:1. V. A. Alekseev, E. M. Kozachenko, and S. I. Yuran, “Autonomous setup for eliminating accidental release in sewage filtration systems,” Intellekt. Sist. Proizvod. 2, 239–243 (2011).
2. V. A. Alekseev, V. P. Usol’tsev, S. I. Yuran, and D. N. Shul’min, “System for monitoring changes in the optical density of wastewater,” Prib. Metody Izmer. 9(1), 7–16 (2018).
3. V. A. Alekseev, S. A. Ardashev, and S. I. Yuran, “Automated photoplethysmograph,” Prib. Metody Izmer. 1(6), 46–51 (2013).
4. V. A. Alekseev, S. I. Yuran, A. S. Perminov, and M. A. Sterkhova, “The source of pulsed laser radiation,” Russian patent 2477553 (2013).
5. N. V. Nikonorov and A. I. Sidorov, Materials and Technologies of Fiber Optics: Special Optical Fibers (ITMO University, St. Petersburg, 2009).
6. GOST 15130-86, “Silica optical glass: General specifications.”
7. http://sphotonics.ru/catalog/skorostnye-elektroopticheskie-pereklyuchateli-nanospeed/nssw1kh4/.
8. OptiGrate, http://www.azimp.ru/catalogue/optical+elements/39585/.