DOI: 10.17586/1023-5086-2018-85-02-15-19
УДК: 543.424.2, 616.126.52
Using Raman spectroscopy for the evaluation of extracellular matrices based on heart valves
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Тимченко Е.В., Тимченко П.Е., Волова Л.Т., Першуткина С.В., Шалковская П.Ю. Использование метода спектроскопии комбинационного рассеяния в оценке экстраклеточных матриксов на основе клапанов сердца // Оптический журнал. 2018. Т. 85. № 2. С. 15–19. http://doi.org/10.17586/1023-5086-2018-85-02-15-19
Timchenko E.V., Timchenko P.E., Volova L.T., Pershutkina S.V., Shalkovskaya P.Yu. Using Raman spectroscopy for the evaluation of extracellular matrices based on heart valves [in Russian] // Opticheskii Zhurnal. 2018. V. 85. № 2. P. 15–19. http://doi.org/10.17586/1023-5086-2018-85-02-15-19
E. V. Timchenko, P. E. Timchenko, L. T. Volova, S. V. Pershutkina, and P. Yu. Shalkovskaya, "Using Raman spectroscopy for the evaluation of extracellular matrices based on heart valves," Journal of Optical Technology. 85(2), 73-76 (2018). https://doi.org/10.1364/JOT.85.000073
Experimental data on the estimation of the qualitative composition of heart valves and their tissue bio-matrices via Raman scattering spectroscopy are presented. The analysis of the Raman spectra allowed identification of the main bands corresponding to collagen, glycosaminoglycans, lipids, and DNA. A two-dimensional analysis of the introduced optical coefficients was performed to compare the compositions of the principal components before and after sample preparation.
Raman spectroscopy, extracellular matrice, heart valve, decellularization
Acknowledgements:The research was supported by the Ministry of Education and Science of the Russian Federation (Minobrnauka).
OCIS codes: 170.5660, 170.4580, 170.6510
References:1. O. S. Danilina, A. A. Mnatsakanyan, S. I. Gerashchenko, and S. M. Gerashchenko, “Complex of 24-hour hemodynamic monitoring of human cardiovascular system parameters,” Vestn. Penz. Gos. Univ. 11(3), 114–117 (2015).
2. F. Moroni and T. Mirabella, “Decellularized matrices for cardiovascular tissue engineering,” Am. J. Stem Cells 1(3), 1–20 (2014).
3. S. Zia, M. Mozafari, G. Natasha, A. Tan, Z. Cui, and A. M. Seifalian, “Hearts beating through decellularized scaffolds: whole-organ engineering for cardiac regeneration and transplantation,” Crit. Rev. Biotechnol. 36(4), 705–715 (2016).
4. K. Shahin and P. M. Doran, “Strategies for enhancing the accumulation and retention of extracellular matrix in tissue-engineered cartilage cultured in bioreactors,” PLoS One 8(6), 1–13 (2011).
5. P. M. Crapo, T. W. Gilbert, and S. F. Badylak, “An overview of tissue and whole organ decellularization processes,” Biomaterials 32(32), 3233–3243 (2011).
6. A. Assmann, C. Delfs, H. Munakata, F. Schiffer, K. Horstkötter, K. Huynh, M. Barth, V. R. Stoldt, H. Kamiya, U. Boeken, A. Lichtenberg, and P. Akhyari, “Acceleration of autologous in vivo recellularization of decellularized aortic conduits by fibronectin surface coating,” Biomaterials 34(34), 6015–6026 (2013).
7. M. He and A. Callanan, “Comparison of methods for whole organ decellularization in tissue engineering of bioartificial organs,” Tissue Eng. 19(19), 194–208 (2013).
8. C. Krafft, B. Dietzek, and J. Popp, “Raman and CARS microspectroscopy of cells and tissues,” Analyst 134(134), 1046–1057 (2009).
9. R. Polak and R. N. Pitombo, “Care during freeze-drying of bovine pericardium tissue to be used as a biomaterial: a comparative study,” Cryobiology 63(63), 61–66 (2011).
10. D. Lee, Y. S. Kim, J. Song, H. S. Kim, H. J. Lee, H. Guo, and H. Kim, “Effects of Phlomis umbrosa root on longitudinal bone growth rate in adolescent female rats,” Molecules 21(4), 461 (2016).
11. B. Maher, “Tissue engineering: how to build a heart,” Nature 499(499), 20–22 (2013).
12. E. V. Timchenko, P. E. Timchenko, A. Lichtenberg, A. Assmann, H. Aubin, P. Akhyari, L. T. Volova, and S. V. Pershutkina, “Assessment of decellularization of heart bioimplants using a Raman spectroscopy method,” J. Biomed. Opt. 22(9), 091511 (2017).
13. K. J. Rodriguez, L. M. Piechura, A. M. Porras, and K. S. Masters, “Manipulation of valve composition to elucidate the role of collagen in aortic valve calcification,” BMC Cardiovasc. Disord. 14, 29 (2014).
14. H. Xu, B. Xu, Q. Yang, X. Li, X. Ma, Q. Xia, Y. Zhang, C. Zhang, Y. Wu, and Y. Zhang, “Comparison of decellularization protocols for preparing a decellularized porcine annulus fibrosus scaffold,” PLoS One 9(1), e86723 (2014).
15. E. V. Timchenko, P. E. Timchenko, L. T. Volova, D. A. Dolgushkin, P. Y. Shalkovsky, and S. V. Pershutkina, “Detailed spectral analysis of decellularized skin implants,” J. Phys. 737, 012050 (2016).
16. E. V. Timchenko, P. E. Timchenko, L. T. Volova, S. V. Pershutkina, and P. Y. Shalkovsky, “Optical analysis of aortic implants,” J. Opt. Mem. Neural Networks 25(3), 192–197 (2016).
17. E. V. Timchenko, P. E. Timchenko, L. A. Taskina, L. T. Volova, M. N. Miljakova, and N. A. Maksimenko, “Using Raman spectroscopy to estimate the demineralization of bone transplants during preparation,” J. Opt. Technol. 82(3), 153–157 (2015) [Opt. Zh. 82(3), 30–36 (2015)].