ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2018-85-02-03-14

УДК: 548.4, 535.37, 548.23, 548.75, 538.958, 54.05, 54-162, 54-724, 535-15, 538.97, 539.21

Investigation of NV(−) centers and crystallite interfaces in synthetic single-crystal and polycrystalline nanodiamonds by optical fluorescence and microwave spectroscopy

For Russian citation (Opticheskii Zhurnal):

Осипов В.Ю., Романов Н.М., Богданов К.В., Treussart F., Jentgens C., Rampersaud A. Исследование NV(–) центров и интерфейсов кристаллитов в синтетических моно- и поликристаллических наноалмазах методами оптической флуоресцентной и микроволновой спектроскопии // Оптический журнал. 2018. Т. 85. № 2. С. 3–14. http://doi.org/10.17586/1023-5086-2018-85-02-03-14

 

Osipov V.Yu., Romanov N.M., Bogdanov K.V., Treussart F., Jentgens C., Rampersaud A. Investigation of NV(−) centers and crystallite interfaces in synthetic single-crystal and polycrystalline nanodiamonds by optical fluorescence and microwave spectroscopy [in Russian] // Opticheskii Zhurnal. 2018. V. 85. № 2. P. 3–14. http://doi.org/10.17586/1023-5086-2018-85-02-03-14

For citation (Journal of Optical Technology):

V. Yu. Osipov, N. M. Romanov, K. V. Bogdanov, F. Treussart, C. Jentgens, and A. Rampersaud, "Investigation of NV(−) centers and crystallite interfaces in synthetic single-crystal and polycrystalline nanodiamonds by optical fluorescence and microwave spectroscopy," Journal of Optical Technology. 85(2), 63-72 (2018). https://doi.org/10.1364/JOT.85.000063

Abstract:

Three types of diamond nanoparticles with sizes from 5 to 1000 nm have been investigated, whose crystal lattices include nitrogen-vacancy (NV) centers: detonation nanodiamonds (DNDs), dynamic-synthesis polycrystalline diamonds, and static-synthesis single-crystal diamonds. The electron paramagnetic resonance spectra have been investigated, along with the luminescence and IR absorption spectra of these materials. The DND concentration of NV(−) centers is 2.7 ppm and is highest for particles in the size range up to 7 nm. The concentration of NV(−) centers in polycrystalline diamonds is an order of magnitude less and depends on the average size of the polycrystalline particles, reaching a maximum at 180 nm in the average size range. The luminescence is brightest in 100-nm particles of synthetic Ib diamonds subjected to high-energy-electron irradiation and annealing. The latter with an NV(−) concentration of around 4 ppm can be used as fluorescent markers at the nanolevel.

Keywords:

luminescence, IR spectroscopy, electron paramagnetic resonance, nanodiamond, polycrystallines, shock-wave synthesis, crystallite boundaries, luminescence centers, surface functional groups

Acknowledgements:

The research was supported by the Russian Science Foundation (RSF) (project No. 14–13–00795); Japan Society for the Promotion of Science (JSPS) (L17526); Russian Foundation for Basic Research (RFBR) (project No. 17-52-50004 YaF_a).
The authors are grateful to Professor Takuya Hayashi from Shinshu University (Nagano, Japan) for help in obtaining images of particles by high-resolution transmission electron microscopy. V. Yu. Osipov is grateful to Hosei University (Tokyo, Japan) for collaboration.

OCIS codes: 160.4236, 160.2540, 300.6370, 300.6280, 300.6340, 350.3850

References:

1. A. Vul’ and O. Shenderova, eds., Detonation Nanodiamonds: Science and Applications (Pan Stanford, Singapore, 2014).
2. V. N. Mochalin, O. Shenderova, D. Ho, and Y. Gogotsi, “The properties and applications of nanodiamonds,” Nat. Nanotechnol. 7(1), 11 (2012).
3. O. Shenderova and G. McGuire, “Science and engineering of nanodiamond particle surfaces for biological applications,” Biointerphases 10, 030802 (2015).
4. R. M. Hazen, “The new diamond makers: diamonds by explosion,” in The Diamond Makers (Cambridge University Press, Cambridge, 1999), Chap. 11, pp. 190–198.
5. J. Beard, “Explosive mixtures,” New Scientist (1637), 43–47 (1988).
6. L. N. Teasley, N. F. Bailey, and O. R. Bergmann, “Micropolycrystalline diamond by shock synthesis: advances in performance and property characterization,” Proc. Electrochem. Soc. 97–32, 48–57 (1998).
7. P. D. Ownby, “Nano 6H diamond polytype polycrystalline powder,” NSTI-Nanotech. 3, 210 (2004).
8. A. I. Shames, V. Yu. Osipov, H. J. von Bardeleben, and A. Ya. Vul’, “Spin S=1 centers: a universal type of paramagnetic defects in nanodiamonds of dynamic synthesis,” J. Phys. Condens. Matter 24(22), 225302 (2012).
9. J. H. N. Loubser and J. A. van Wyk, “Electron spin resonance in the study of diamond,” Rep. Prog. Phys. 41, 1201 (1978).
10. M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep. 528(1), 1 (2013).
11. A. I. Shames, V. Yu. Osipov, H. J. von Bardeleben, J.-P. Boudou, F. Treussart, and A. Ya. Vul’, “Native and induced triplet nitrogen-vacancy centers in nano- and microdiamonds: half-field electron paramagnetic resonance fingerprint,” Appl. Phys. Lett. 104, 063107 (2014).
12. A. I. Shames, V. Yu. Osipov, J. P. Boudou, A. M. Panich, H. J. von Bardeleben, F. Treussart, and A. Ya. Vul’, “Magnetic resonance tracking of fluorescent nanodiamond fabrication,” J. Phys. D: Appl. Phys. 48(15), 155302 (2015).
13. V. Yu. Osipov, A. I. Shames, T. Enoki, K. Takai, M. V. Baidakova, and A. Ya. Vul, “Paramagnetic defects and exchange coupled spins in pristine ultrananocrystalline diamonds,” Diamond Relat. Mater. 16(12), 2035 (2007).

14. A. I. Shames, D. Mogilyansky, A. M. Panich, N. A. Sergeev, M. Olszewski, J.-P. Boudou, and V. Yu. Osipov, “XRD, NMR, and EPR study of polycrystalline micro- and nanodiamonds prepared by a shock wave compression method,” Phys. Status Solidi A 212(11), 2400 (2015).
15. K. V. Bogdanov, V. Yu. Osipov, M. V. Zhukovskaya, C. Jentgens, F. Treussart, T. Hayashi, K. Takai, A. V. Fedorov, and A. V. Baranov, “Size-dependent Raman and SiV-center luminescence in polycrystalline nanodiamonds produced by shock wave synthesis,” RSC Adv. 6, 51783 (2016).
16. A. I. Shames, V. Yu. Osipov, K. V. Bogdanov, A. V. Baranov, M. V. Zhukovskaya, A. Dalis, S. S. Vagarali, and A. Rampersaud, “Does progressive nitrogen doping intensify negatively charged nitrogen vacancy emission from e-beam-irradiated Ib type high-pressure-high-temperature diamonds?” J. Phys. Chem. C 121(9), 5232 (2017).
17. K. Iizuka, Y. Furukawa, and R. Oshima, “Analysis of binding state of heat treated diamond powder,” Am. J. Chem. Mater. Sci. 1(1), 7 (2014).
18. N. B. Colthup, L. H. Daly, and S. E. Wiberley, Introduction to Infrared and Raman Spectroscopy (Academic Press, New York, 1964).
19. K. Xu and Q. Xue, “New method for deaggregation of nanodiamond from explosive detonation: graphitization-oxidation method,” Phys. Solid State 46(4), 649 (2004) [Fiz. Tverd. Tela 46(4), 633 (2004)].
20. A. M. Zaitsev, Optical Properties of Diamond: A Data Handbook (Springer-Verlag, Berlin, 2001).
21. I. Rehor, J. Slegerova, J. Kucka, V. Proks, V. Petrakova, M.-P. Adam, F. Treussart, S. Turner, S. Bals, P. Sacha, M. Ledvina, A. M. Wen, N. F. Steinmetz, and P. Cigler, “Fluorescent nanodiamonds: fluorescent nanodiamonds embedded in biocompatible translucent shells,” Small 10(6), 1106 (2014).
22. I. I. Kulakova, “Surface chemistry of nanodiamonds,” Phys. Solid State 46(4), 636 (2004) [Fiz. Tverd. Tela 46(4), 621 (2004)].
23. Y. W. Zhu, X. Q. Shen, B. C. Wang, X. Y. Xu, and Z. J. Feng, “Chemical mechanical modification of nanodiamond in aqueous system,” Phys. Solid State 46(4), 681 (2004) [Fiz. Tverd. Tela 46(4), 665 (2004)].
24. S. Osswald, G. Yushin, V. Mochalin, S. O. Kucheyev, and Y. Gogotsi, “Control of sp 2 /sp 3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air,” J. Am. Chem. Soc. 128(35), 11635 (2006).