DOI: 10.17586/1023-5086-2018-85-02-34-39
Plasmonic circular dichroism of tailed spatial cross-shaped nanostructure
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Fei Wang, Tong Fu, Yongkai Wang, Yu Zhang, Zhongyue Zhang, Li Wang Plasmonic circular dichroism of tailed spatial cross-shaped nanostructure (Циркулярный плазмонный дихроизм в крестовидных наноструктурах с хвостом в виде наностержня) [на англ. яз.] // Оптический журнал. 2018. Т. 85. № 2. С. 34–39. http://doi.org/10.17586/1023-5086-2018-85-02-34-39
Fei Wang, Tong Fu, Yongkai Wang, Yu Zhang, Zhongyue Zhang, Li Wang Plasmonic circular dichroism of tailed spatial cross-shaped nanostructure (Циркулярный плазмонный дихроизм в крестовидных наноструктурах с хвостом в виде наностержня) [in English] // Opticheskii Zhurnal. 2018. V. 85. № 2. P. 34–39. http://doi.org/10.17586/1023-5086-2018-85-02-34-39
Fei Wang, Tong Fu, Yongkai Wang, Yu Zhang, Zhongyue Zhang, and Li Wang, "Plasmonic circular dichroism of a tailed spatial cross-shaped nanostructure," Journal of Optical Technology. 85(2), 88-92 (2018). https://doi.org/10.1364/JOT.85.000088
Artificial chiral plasmonic nanostructure with strong circular dichroism (CD) has wide applications in biological monitoring, analytic chemistry, and optical property researching. In this paper, a tail is introduced to break the symmetry of metal spatial cross-shaped nanostructure to create chiral property. Finite element method calculating results show that dipole of upper tailed nanorod and that of bottom nanorod form Born–Kuhn model. CD effect depends strongly on the length and the orientation of introduced nanorod. This work provides novel way to generate tunable CD effect and provides potential application for further optimization.
circular dichroism, plasmon, electric dipole, Born–Kuhn model
Acknowledgements:This work was supported by National Nature science Foundation of China (NSFC) (61575117), National college students Innovation-Training Project Foundation of China (201610718012), Fundamental Research Funds for the Central Universities of Ministry of Education of China (GK201603015), and Excellent PhD Dissertation Foundation of Shaanxi Normal University (X2014YB08).
OCIS codes: 240.5420, 240.6680, 260.3910
References:1. Barron L.D., Long D.A. Molecular light scattering and optical activity // J. Raman Spectrosc. 1983. V. 14. № 14. P. 219–219.
2. Govorov A.O., Fan Z.Y., Pedro H., Slocik J.M., Naik R.R. Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects // Nano Lett. 2010. V. 10. № 4. P. 1374–1382
3. Nadia A.A., Fan Z., Tonooka T., Sharon M.K., Nikolaj G., Euan H., Alexander O.G., Malcolm K. Induced chirality through electromagnetic coupling between chiral molecular layers and plasmonic nanostructures // Nano Lett. 2012. V. 12. № 2. P. 977–983.
4. Xia Y.S., Zhou Y.L., Tang Z.Y. Chiral inorganic nanoparticles: origin, optical properties and bioapplications // Nanosale. 2011. V. 3. № 4. P. 1374–1382.
5. Zhao R., Zhang L., Zhou J., Koschny T., Soukoulis C.M. Conjugated gammadion chiral metamaterial with uniaxal optical activity and negative refractive index // Phys. Rev. B 2011. V. 83. № 3. P. 035–105.
6. Hendry E., Carpy T., Johnston J., Popland M., Mikhaylovskiy R.V., Lapthorn A.J., Kelly S.M., Barron L.D., Gadegaard N., Kadodwala M. Ultrasensitive detection and characterization of biomolecules using superchiral fields // Nature Nanotech. 2010. V. 5. № 11. P. 783–787.
7. Ernst K.H. Molecular chirality at surfaces // Phys. Status Solidi. 2012. V. 249. № 11. P. 2057–2088.
8. Robert W.J. Bioinformatics analyses of circular dichroism protein reference databases // Bioinformatics. 2005. V. 21. № 23. P. 4230–4238.
9. Kelly S.M., Jess T.J., Price N.C. How to study proteins by circular dichroism // Biochimi. Biophys. Acta – Proteins & Proteomics. 2005. V. 1751. № 2. P. 119–139.
10. Zhu Y., Xu L., Ma W., Xu Z., Kuang H., Wang L., Xu C. A one-step homogeneous plasmonic circular dichroism detection of aqueous mercury ions using nucleic acid functionalized gold nanorods // Chem. Commun. 2012. V. 48. P. 11889–11891.
11. George V.E., Ashwin K.I., Peter C.K. Planar negative refractive index media using periodically L-C loaded transmission lines // IEEE. 2002. V. 50. № 12. P. 2702–2712.
12. Ben M.M., Yulia C., Alexander B.T., Omri B.E., Fan Z.Y., Alexander O.G., Gil M. Amplification of chiroptical activity of chiral biomolecules by surface plasmons // Nano Lett. 2014. V. 13. № 3. P. 1203–1209.
13. Gansel J.K., Thiel M., Rill M.S., Decker M., Bade K., Saile V., Freymann G.V., Linden S., Wegener M. Gold helix photonic metamaterial as broadband circular polarizer // Science. 2009. V. 325. № 5947. P. 1513–1515.
14. Xiong X., Sun W.H., Bao Y.J., Peng R.W., Wang M., Sun C., Lu X., Shao J., Li Z.F., Ming N.B. Switching the electric and magnetic responses in a metamaterial [J] // Phys. Rev. B. 2009. V. 80. № 20. P. 2665–2668.
15. Tang Y., Sun L., Cohen A.E. Chiroptical hot spots in twisted nanowire plasmonic oscillators [J] // Appl. Phys. Lett. 2013. V. 102. № 4. P. 043–103.
16. Kwon D.H., Werner P.L., Werner D.H. Optical planar chiral metamaterial designs for strong circular dichroism and polarization rotation // Opt. Express. 2008. V. 16. № 16. P. 11802–11807.
17. Cao T., Zhang L., Simpson R.E., Wei C.W., Cryan M.J., Cao T. Strongly tunable circular dichroism in gammadion chiral phase-change metamaterials // Opt. Express. 2008. V. 21. № 23. P. 27841–27851.
18. Nasimuddin, Qing X.M., Chen Z.N. Compact asymmetric-slit microstrip antennas for circular polarization // IEEE T. Antenn. Propag. 2011. V. 59. № 1. P. 285–288.
19. Schwanecke A.S., Krasavin A., Bagnall D.M., Potts A.Z., Zheludev A.V., Zheludev N.I. Broken time reversal of light interaction with planar chiral nanostructures // Phys. Rev. Lett. 2003. V. 91. № 24. P. 247404.
20. Lee S., Wang Z.B., Cheng F., Jiao J., Khan A., Li L. Circular dichroism in planar extrinsic chirality metamaterial at oblique incident beam // Opt. Commun. 2013. V. 309. № 7. P. 201–204.
21. Tian X.R., Fang Y.R., Zhang B.L. Multipolar fano resonances and fano-assisted optical activity in silver nanorice heterodimers // ACS Photonics. 2014. V. 1. № 11. P. 1156–1164.
22. Johnson P.B., Christy R.W. Optical constants of the noble metals // Phys. Rev. B. 1972. V. 6. № 12. P. 4370–4379.
23. Yin X., Schaferling M., Metzger B., Giessen H. Interpreting chiral nanophotonic spectra: the plasmonic Born–Kuhn model // Nano Lett. 2013. V. 13. № 12. P. 6238–6243.
24. Lu X.X., Wu J., Zhu Q.N., Zhao J.W., Wang Q.B., Zhan L., Ni W.H. Circular dichroism from single plasmonic nanostructures with extrinsic chirality // Nanoscale. 2014. V. 6. № 23. P. 14244–14253.
25. Wang Y.K., Qin Y., Zhang Z.Y. Extraordinary optical transmission property of x-shaped plasmonic nanohole arrays // Plasmonics. 2014. V. 9. P. 203–207.
26. Gansel J. K., Latzel M., Frolich A., Kaschke J., Thiel M., Wegener M. Tapered gold-helix metamaterials as improved circular polarizers 100(10) // Appl. Phys. Lett. 2012. V. 100. № 10. P. 101109.
27. Martin S., Daniel D., Mario H., Harald G. Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures // Phys. Rev. X. 2012. V. 2. № 3. P. 4186–4190.
28. Teperik T.V., De Abajo F.G., Borisov A.G., Abdelsalam M., Bartlett P.N., Sugawara Y., Baumberg J.J. Omnidirectional absorption in nanostructured metal surfaces // Nature photon. 2008. V. 2. № 5. P. 299–301.
29. Vidal X., Kim W.J., Baev A., Tokar V., Jee H., Swihart M.T., Prasad N.P. Coupled plasmons induce broadband circular dichroism in patternable films of silver nanoparticles with chiral ligands // Nanoscale. 2013. V. 5. № 21. P. 10550–10555.