DOI: 10.17586/1023-5086-2018-85-04-75-80
УДК: 535.015
Structure of the LiNbO3:Mg,Cr crystal and its properties at visible and terahertz wavelengths
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Галуцкий В.В., Строганова Е.В., Яковенко Н.А., Судариков К.В., Рассейкин Д.А., Юрова Н.А. Структура кристалла LiNbO3:Mg,Cr и его свойства в видимом и терагерцовом диапазоне длин волн // Оптический журнал. 2018. Т. 85. № 4. С. 75–80. http://doi.org/10.17586/1023-5086-2018-85-04-75-80
Galutskiy V.V., Stroganova E.V., Yakovenko N.A., Sudarikov K.V., Rasseykin D.A., Yurova N.A. Structure of the LiNbO3:Mg,Cr crystal and its properties at visible and terahertz wavelengths [in Russian] // Opticheskii Zhurnal. 2018. V. 85. № 4. P. 75–80. http://doi.org/10.17586/1023-5086-2018-85-04-75-80
V. V. Galutskiĭ, E. V. Stroganova, N. A. Yakovenko, K. V. Sudarikov, D. A. Rasseĭkin, and N. A. Yurova, "Structure of the LiNbO3:Mg,Cr crystal and its properties at visible and terahertz wavelengths," Journal of Optical Technology. 85(4), 250-254 (2018). https://doi.org/10.1364/JOT.85.000250
Optical and radiophysical studies on a gradient-activated lithium niobate crystal with a double concentration profile of chromium (a smooth change in concentration from 0.036 at.% to 0.035 at.%) and magnesium (a change in the concentration from 7 at.% to 3 at.%) were performed with the aim of determining the defect structure and the radiation resistance of the test sample.
terahertz spectroscopy, gradient-activated crystal, refraction index spectrum, radiation resistance
Acknowledgements:The research was supported by the Ministry of Education and Science of the Russian Federation (Minobrnauka) (8.4958.2017/BCh (17/28-t)).
OCIS codes: 300.6495, 300.0300
References:1. Y. Furukawa, K. Kitamura, E. Suzuki, and K. Niwa, “Stoichiometric LiNbO 3 single crystal growth by double crucible Czochralski method using automatic powder supply system,” J. Cryst. Growth 197(4), 889–895 (1999).
2. K. Kitamura, J. K. Yamamoto, and N. Iyi, “Stoichiometric LiNbO 3 single crystal growth by double crucible Czochralski method using automatic powder supply system,” J. Cryst. Growth 116, 327–332 (1992).
3. N. Nakamura, S. Takekawa, S. Kurimura, K. Kitamura, and H. Nakajima, “Crystal growth and characterization of titanium-doped near-stoichiometric LiNbO 3 ,” J. Cryst. Growth 264, 339–345 (2004).
4. C. E. M. de Oliveira and G. Orr, “Controlled composition modulation in potassium lithium tantalate niobate crystals grown by off-centered TSSG method,” J. Cryst. Growth 273, 203–206 (2004).
5. Y. Zheng, E. Shi, S. Wang, Z. Lu, S. Cui, L. Wang, and W. Zhong, “Domain structures and etching morphologies of lithium niobate crystals with different Li contents grown by TSSG and double crucible Czochralski method,” Cryst. Res. Technol. 39(5), 387–395 (2004).
6. Y. Zheng, “A novel technique to grow stoichiometric lithium niobate single crystal,” J. Cryst. Growth 275, e895–e898 (2005).
7. C. B. Tsai, Y. T. Hsia, and M. D. Shih, “Zone-levelling Czochralski growth of MgO-doped near-stoichiometric lithium niobate single crystals,” J. Cryst. Growth 275, 504–511 (2005).
8. V. V. Galutskiy, E. V. Stroganova, and M. I. Vatlina, “Growth of single crystal with a gradient of concentration of impurities by the Czochralski method using additional liquid charging,” J. Cryst. Growth 311, 1190–1194 (2009).
9. N. V. Sidorov, Lithium Niobate: Defects, Photorefractive Effect, Vibrational Spectrum, Polaritons, N. V. Sidorov, T. R. Volk, B. N. Mavrina, and V. T. Kalinnikova, eds. (Nauka, Moscow, 2003).
10. V. V. Galutskii, E. V. Stroganova, and N. A. Yakovenko, “Spectral separation of Cr 3+ optical centers in stoichiometric magnesium-doped lithium niobate crystals,” Opt. Spectrosc. 110(3), 401–407 (2011).
11. G. Malovichko, V. Grachev, E. Kokanyan, and O. Schirmer, “Axial and low-symmetry centers of trivalent impurities in lithium niobate: chromium in congruent and stoichiometric crystals,” Phys. Rev. B 59(14), 9113–9125 (1999).
12. G. M. Salley, S. A. Basun, A. A. Kaplyanskii, R. S. Meltzer, K. Polgar, and U. Happek, “Chromium centers in stoichiometric LiNbO 3 ,” J. Lumin. 87(89), 1133–1135 (2000).
13. A. Kaminska, A. Suchocki, M. Grinberg, J. Garcia-Sole, F. Jaque, and L. Arizmendi, “High-pressure spectroscopy of LiNbO 3 :MgO,Cr 3+ crystals,” J. Lumin. 87(89), 571–573 (2000).
14. G. A. Torchia, O. Martinez Matos, P. Vaveliuk, and J. O. Tocho, “Influence of the electron-lattice coupling for Cr 3+ ions in Nb 5+ site into congruent co-doped LiNbO 3 :Cr 3+ :ZnO crystal,” Solid State Commun. 127(8), 535–539 (2003).
15. M. N. Palatnikov, V. A. Sandler, N. V. Sidorov, O. V. Makarova, I. V. Biryukova, I. N. Efremov, and D. V. Ivanenko, “Spontaneous unipolarity and anomalies of dielectric and piezoelectric properties and electrical conductivity of initially heavily doped polydomain LiNbO 3 :Zn crystals,” Phys. Solid State 57(8), 1541–1546 (2015) [Fiz. Tverd. Tela 57(8), 1515–1520 (2015)].
16. E. V. Stroganova, V. V. Galutskii, K. V. Sudarikov, D. A. Rasseikin, and N. A. Yakovenko, “Determination of the center composition of gradient-activated litium niobate crystals doped with magnesium and chromium,” Optoelectron. Instrum. Data Process. 52(2), 167–173 (2016).
17. T. P. J. Han, F. Jaque, V. Bermudez, and E. Dieguez, “Luminescence of the Cr 3+ R-lines in pure and MgO co-doped near stoichiometric LiNbO 3 :Cr crystals,” Chem. Phys. Lett. 369(5–6), 519–524 (2003).
18. Yu. S. Kuz’minov, Niobate and Lithium Tantalate—Materials for Nonlinear Optics (Nauka, Moscow, 1975).
19. D. M. Mittleman and M. Gupta, “Gas sensing using terahertz time-domain spectroscopy,” Appl. Phys. 67, 379–390 (1998).
20. J. Kind, “Far-infrared dielectric propeties of polar liquids probed by femtosecond terahertz pulse spectroscopy,” J. Phys. Chem. 100, 10373–10379 (2013).
21. V. V. Galutskiı˘, K. V. Sudarikov, E. V. Stroganova, and D. A. Rasseı˘kin, “Investigation of the radiation stability of a gradient-activated crystal with double doping LiNbO 3 :Mg,Cr,” in Abstracts of the VI International Youth Scientific School-Conference Modern Problems of Physics and Technology Part 1 (Moscow, 2017), p. 304.
22. CASTECH, http://www.castech.com/.
23. Gooch and Housego, https://goochandhousego.com/product-categories/crystal-optics/.
24. EKSMA OPTICS, http://eksmaoptics.com/nonlinear-and-laser-crystals/.