ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2018-85-05-13-18

An iterative algorithm for beam complex amplitude reconstruction by radial shearing interferometry

For Russian citation (Opticheskii Zhurnal):

Y. Du, H. Wang, P. Liu, Y. Fu An iterative algorithm for beam complex amplitude reconstruction by radial shearing interferometry (Итерационный алгоритм восстановления комплексной амплитуды пучка в интерферометрии радиального сдвига) [на англ. яз.] // Оптический журнал. 2018. Т. 85. № 5. С. 13–18. http://doi.org/10.17586/1023-5086-2018-85-05-13-18

 

Y. Du, H. Wang, P. Liu, Y. Fu An iterative algorithm for beam complex amplitude reconstruction by radial shearing interferometry (Итерационный алгоритм восстановления комплексной амплитуды пучка в интерферометрии радиального сдвига) [in English] // Opticheskii Zhurnal. 2018. V. 85. № 5. P. 13–18. http://doi.org/10.17586/1023-5086-2018-85-05-13-18

For citation (Journal of Optical Technology):

Y. Du, H. Wang, P. Liu, and Y. Fu, "Iterative algorithm for beam complex amplitude reconstruction by radial shearing interferometry," Journal of Optical Technology. 85(5), 264-268 (2018). https://doi.org/10.1364/JOT.85.000264

Abstract:

An iterative algorithm for precisely reconstructing complex amplitude of laser beam based on radial shearing interferometer is proposed. Firstly, the complex amplitude of modulation function which includes the test beam’s information is obtained from a cyclic radial shearing interferogram by Fourier filtering method. Then the complex amplitude of modulation function is used to estimate the complex amplitude of the laser output with a successive iterative process. The simulations and real experimental results showed the performance of the proposed iteration method of beam complex amplitude reconstruction.

Keywords:

laser beam characterization, complex amplitude reconstruction, cyclic radial shearing interferometer, iterative algorithm

Acknowledgements:

This work was supported by the grants from Promotion Program for Young and Middle-aged Teacher in Science and Technology Research of Huaqiao University (No.ZQN-PY518), National Natural Science Foundation of China (No.61605048,11474233), Natural Science Foundation of Fujian Province, China (No.2016J01300, 2018J05105), Scientific Research Funds of Huaqiao University (No.15BS413), and the Young and Middle-aged Teachers Education Scientific Research Project of Fujian Province, China (No. JAT160020).

OCIS codes: 140.0140, 140.3295, 120.4640, 120.3180

References:

1. Barnes R. and Smith L.C. A combined phase, near and far field diagnostic for large aperture laser system // Proc. SPIE. 1999. V. 3492. P. 564–572.
2. Wegner P.J., Henesian M.A., Salmon J.T., Seppala L.G., Weiland T.L., Williams W.H., and van Wonterghem B.M. Wavefront and divergence of the Beamlet prototype laser // Proc. SPIE. 1999. V. 3492. P. 1019–1030.
3. Rotter M., Jancaitis K., and Marshall C. Pump-induced wavefront distortion in prototypical NIF/LMJ amplifier modeling and comparison with experiment // Proc. SPIE. 1999. V. 3492. P. 638–659.
4. Liu Dong, Yang Yongying, Wang Lin, and Zhuo Yongmo. Real time diagnosis of transient pulse laser with high repetition by radial shearing interferometer // App. Opt. 2007. V. 46(34). P. 8305–8314.
5. Deutsch, Hillenbrand, and Novotny. Near-field amplitude and phase recovery using phase-shifting interferometry // Opt. Exp. 2008. V. 16(2). P. 494–501.
6. Juanola-Parramon R., Gonzalez N., and Molina-Terriza G. Characterization of optical beams with spiral phase interferometry // Opt. Exp. 2008. V. 16(7). P. 4471–4478.

7. Hall and Knox. Traceable measurements for beam propagation ratio M2 // J. Phys.: Conf. Ser. 85 (2007) 012014. Third Internat. Conf. Optical and Laser Diagnostics (ICOLAD 2007).
8. Du Yongzhao, Feng Guoying, Li Hongru, Cai Zhen, Zhao Hong, Zhou Shouhuan. Real-time determination of beam propagation factor by Mach-Zehnder point diffraction interferometer // Opt. Commun. 2013. V. 287. P. 1–5.
9. Du Yongzhao, Fu Yuqing, and Zheng Lixin. Complex amplitude reconstruction for dynamic beam quality M2 factor measurement with self-referencing interferometer wavefront sensor // Appl. Opt. 2016. V. 55(36). P. 10180–10186.
10. Yongzhao Du. Measurement of M2-curve for asymmetric beams by self- referencing interferometer wavefront sensor // Sensors. 2016. V. 16. P. 1–14.
11. Notaras J. and Paterson C. Demonstration of closed-loop adaptive optics with a point-diffraction interferometer in strong scintillation with optical vortices // Opt. Exp. 2007. V. 15(21). P. 13745–13756.
12. Malacara D., Servin M., and Malacara Z. Interferogram analysis for optical testing. N.Y.: Marcel Dekker, 1998.
13. Gu Naiting, Huang Linhai, Yang Zeping, and Rao Changhui. A single-shot common-path phase-stepping radial shearing interferometer for wavefront measurements // Opt. Exp. 2011. V. 19(5). P. 4703–4713.
14. Dubra A., Paterson C., and Dainty C. Study of the tear topography dynamics using a lateral shearing interferometer // Opt. Exp. 2004. V. 12(25). P. 6278–6288.
15. Liang P., Ding J., Jin Z., Guo C.-S., and Wang H.-T. Two-dimensional wave-front reconstruction from lateral shearing interferograms // Opt. Exp. 2006. V. 14(2). P. 625–634.
16. Servin M., Malacara D., and Marroquin J.L. Wave-front recovery from two orthogonal sheared interferograms // Appl. Opt. 1996. V. 35(22). P. 4343–4348.
17. Hariharan R. and Sen D. Radial shearing interferometer // J. Sci. Instrum. 1961. V. 38. P. 428–432.
18. Toto-Arellano, Rodriguez-Zurita, Meneses-Fabian, and V´azquez-Castillo. A single-shot phase-shifting radial-shearing interferometer // J. Opt. A: Pure Appl. Opt. 2009. V. 11. P. 045704.
19. Kohno T., Matsumoto D., Yazawa T., and Uda Y. Radial shearing interferometer for in-process measurement of diamond turning // Opt. Eng. 2000. V. 39(10). P. 2696–2699.
20. Kowalik W.W., Garncarz B.E., Kasprzak H.T. Corneal topography measurement by means of radial shearing interference: Part I. Theoretical consideration // Optik. 2002. V. 113. P. 39–45.
21. Garncarz B.E., Kowalik W.W., Kasprzak H.T. Corneal topography measurement by means of radial shearing interference: Part II. Experiment results // Optik. 2002. V. 113. P. 46–50.
22. Kantun-Montiel R. and Cruz M.-F. Carrier fringes and a non-conventional rotational shear in a triangular cyclic-path interferometer // J. Opt. 2015. V. 17. P. 045602.
23. L´opez Lago E. and de la Fuente R. Wavefront sensing by diffracted beam interferometry // J. Opt. A: Pure Appl. Opt. 2002. V. 4. P. 299–302.
24. de la Fuente R. and López Lago E. Mach-Zehnder diffracted beam interferometer // Opt. Exp. 2007. V. 15(7). P. 3876–3887.
25. L´opez Lago E. and de la Fuente R. Single-shot amplitude and phase reconstruction by diffracted-beam interferometry // J. Opt. A: Pure Appl. Opt. 2009. V. 11. P. 125703.
26. Murty M.V.R.K. A compact radial shearing interferometer based on the law of refraction // Appl. Opt. 1964. V. 3(7). P. 853–858.
27. Jeong T.M., Ko D.K., and Lee J. Method of reconstructing wavefront aberrations by use of Zernike polynomials in radial shearing interferometers // Opt. Lett. 2007. V. 32(3). P. 232–234.
28. Gu Naiting, Huang Linhai, Yang Zeping, Luo Qun, and Rao Changhui. Modal wavefront reconstruction for radial shearing interferometer with lateral shear // Opt. Lett. 2011. V. 36(18). P. 3693–3695.
29. Kohler D.R. and Gamiz V.L. Interferogram reduction for radial-shear and localreference-holographic interferograms // App. Opt. 1986. V. 25(10). P. 1650–1652.
30. Li Daihai, Chen Huaixin, and Chen Zhenpei. Simple algorithms of wavefront reconstruction for cyclic radial shearing interferometer // Opt. Eng. 2002. V. 41(8). P. 1893–1898.
31. Li D.H., Wang P., Li X., Yang H.K., and Chen H.X. Algorithm for near-field reconstruction based on radial-shearing interferometry // Opt. Lett. 2005. V. 30(5). P. 492–494.
32. Li Dahai, Wen Fulin, Wang Qionghua, Zhao Yunying, Li Fuming, and Bao Bingfang. Improved formula of wavefront reconstruction from a radial shearing interferogram // Opt. Lett. 2008. V. 33(3). P. 210–212.
33. Ling Tong, Liu Dong, Yang Yongying, Sun Lei, Tian Chao, and Shen Yibing. Off axis cyclic radial shearing interferometer for measurement of centrally blocked transient wavefront // Opt. Lett. 2013. V. 38(14). P. 2493–2495.
34. L´opez Lago E. and de la Fuente R. Amplitude and phase reconstruction by radial shearing interferometry // Appl. Opt. 2008. V. 47(3). P. 372–377.
35. Li DaHai, Qi XiaoPing, Wang QiongHua, Liu XiaoYong, Feng GuoYing, and Zhou ShouHuan. Accurate retrieval algorithm of amplitude from radial-shearing interferogram // Opt. Lett. 2010. V. 35(18). P. 3054–3056.
36. Takeda M., Ina H., Kobayashi S. Fourier transform method of fringe pattern analysis for computer-based topography and interferometry // JOSA. 1982. V. 72(1). P. 156–160.