ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2018-85-05-19-25

УДК: 531.742, 62.791

Digital goniometer with a two-dimensional scale

For Russian citation (Opticheskii Zhurnal):

Бохман Е.Д., Венедиктов В.Ю., Королёв А.Н., Лукин А.Я. Цифровой измеритель угла с двумерной шкалой // Оптический журнал. 2018. Т. 85. № 5. С. 19–25. http://doi.org/10.17586/1023-5086-2018-85-05-19-25

 

Bokhman E.D., Venediktov V.Yu., Korolev A.N., Lukin A.Ya. Digital goniometer with a two-dimensional scale [in Russian] // Opticheskii Zhurnal. 2018. V. 85. № 5. P. 19–25. http://doi.org/10.17586/1023-5086-2018-85-05-19-25

For citation (Journal of Optical Technology):

E. D. Bokhman, V. Yu. Venediktov, A. N. Korolev, and A. Ya. Lukin, "Digital goniometer with a two-dimensional scale," Journal of Optical Technology. 85(5), 269-274 (2018). https://doi.org/10.1364/JOT.85.000269

Abstract:

This paper presents the results of experimental and modeling metrological studies on a digital goniometer, measuring angular orientations of an image of an optical mark using a digital camera array. A fully digital technology is also described for measuring angles using virtual angular-scale carriers (digital images). By using a mathematical model for the goniometer, it is shown that the error in angle measurements can be reduced to the level of thousandths of an arcsecond in principle.

Keywords:

rotation sensing, optical mark, mark angular orientation, photodetector array, mathematical model, measurement error

Acknowledgements:

V. Yu. Venediktov is grateful to the Ministry of Education and Science of the Russian Federation for funding within the framework of the state task 8.1039.2017 “Study of new principles of high-speed measurement of amplitude-phase parameters of optical beams and their application in adaptive optics problems.”

OCIS codes: 100.2000, 120.3930

References:

1. HEIDENHAIN GmbH, www.heidenhain.de.
2. Renishaw, www.renishaw.com.
3. Special Design Bureau for Measuring Systems (SKB IS), www.skbis.ru.
4. S. V. Gordeev and B. G. Turukhano, “Investigation of the interference field of two spherical waves for holographic recoding of precision radial diffraction gratings,” Opt. Laser Technol. 28(5), 255–261 (1996).
5. M. N. Burnashev, P. A. Pavlov, and Yu. V. Filatov, “Development of precision laser goniometric systems,” Quantum Electron. 43(2), 130–138 (2013) [Kvant. Elektron. 43(2), 130–138 (2013)].
6. A. N. Korolev, A. I. Gartsuev, G. S. Polishchuk, and V. P. Tregub, “Metrological studies and the choice of the shape of an optical mark in digital measuring systems,” J. Opt. Technol. 77(6), 370–372 (2010) [Opt. Zh. 77(6), 25–27 (2010)].
7. A. B. Bel’skiı˘, M. A. Gan, I. A. Mironov, and R. P. Seı˘syan, “Prospects for the development of optical systems for nanolithography,” J. Opt. Technol. 76(8), 496–503 (2009) [Opt. Zh. 76(8), 59–69 (2009)].
8. A. N. Korolev and A. I. Gartsuev, “Investigation of the accuracy of image positioning on a CCD array,” Izmer. Tekh. 5, 20–22 (2004).
9. J. A. Stone, M. Amer, B. Faust, and J. Zimmerman, “Uncertainties in small-angle measurement systems used to calibrate angle artifacts,” J. Res. Natl. Inst. Stand. Technol. 109(3), 319–333 (2004).