ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2018-85-05-03-06

УДК: 535.41

Monitoring two-coordinate positioning by means of optical spectral coding

For Russian citation (Opticheskii Zhurnal):

Лихачёв И.Г., Пустовой В.И., Светиков В.В., Красовский В.И. Контроль двухкоординатного позиционирования с помощью оптического спектрального кодирования // Оптический журнал. 2018. Т. 85. № 5. С. 3–6. http://doi.org/10.17586/1023-5086-2018-85-05-03-06

 

Likhachev I.G., Pustovoy V.I., Svetikov V.V., Krasovskiy V.I. Monitoring two-coordinate positioning by means of optical spectral coding [in Russian] // Opticheskii Zhurnal. 2018. V. 85. № 5. P. 3–6. http://doi.org/10.17586/1023-5086-2018-85-05-03-06

For citation (Journal of Optical Technology):

I. G. Likhachev, V. I. Pustovoĭ, V. V. Svetikov, and V. I. Krasovskiĭ, "Monitoring two-coordinate positioning by means of optical spectral coding," Journal of Optical Technology. 85(5), 255-258 (2018). https://doi.org/10.1364/JOT.85.000255

Abstract:

Based on spectral coding of broadband radiation, a technique has been developed that makes it possible to monitor the position of a two-coordinate stage and to control its movement with nanometer accuracy. A distinctive feature of the technique is that it makes it possible to monitor the absolute position of the stage without any preliminary calibration. Such devices may be of interest for high-precision systems where the probe is required to move to a given point of the sample with nanometric accuracy.

Keywords:

nanopositioning, Fabry-Perot interferometer, spectral coding, fiberoptic

OCIS codes: 060.2370, 070.4340, 120.2230, 240.5770

References:

1. P. Sixt, L. Falco, P. Dierauer, and H. W. Lehmann, “Microstructure fibertip sensor with spectral encoding,” Proc. SPIE 1011, 213–225 (1988).
2. S. A. Egorov, A. N. Mamaev, and I. G. Likhachiev, “High reliable, self-calibrated signal processing method for interferometric fiber-optic sensors,” Proc. SPIE 2594, 193–197 (1995).
3. P. I. Nikitin, B. G. Gorshkov, M. V. Valeı˘ko, and S. I. Rogov, “Spectral-phase interference method for measuring biochemical reactions on surfaces,” Quantum Electron. 30(12), 1099–1104 (2000) [Kvant. Elektron. 30(12), 1099–1104 (2000)].
4. S. V. Miridonov, M. G. Shlyagin, A. V. Khomenko, and V. V. Spirin, “Digital demodulation algorithm for white-light fiber-optic interferometric sensors,” Proc. SPIE 4777, 136–142 (2002).
5. M. Jedrzejewska-Szczerska, R. Bogdanowiczet, M. Gnyba, R. Hypszer, and B. B. Kosmowski, “Fiber-optic temperature sensor using low-coherence interferometry,” Eur. Phys. J. Spec. Top. 154, 107–111 (2008).
6. N. Ushakov and L. Liokumovich, “Resolution limits of extrinsic Fabry–Perot interferometric displacement sensors utilizing wavelength scanning interrogation,” Appl. Opt. 53(23), 5092–5099 (2014).
7. I. G. Likhachev, V. I. Pustovoı˘, and V. I. Krasovskiı˘, “Measurement of nanoscale roughness using white-light interferometry,” J. Opt. Technol. 84(12), 822–827 (2017) [Opt. Zh. 84(12), 38–44 (2017)].
8. www.inject-laser.ru.
9. www.physikinstrumente.com.