DOI: 10.17586/1023-5086-2018-85-05-34-45
УДК: 004.932.2, 517.968
Stability indices and evaluation of an algorithm for recognizing the type of a dynamic object detected on a finite sequence of 2D baseline frames of an optoelectronic device
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Ягольников С.В., Храмичев А.А., Катулев А.Н. Показатели и оценка устойчивости алгоритма распознавания типа динамического объекта, обнаруживаемого на конечной последовательности 2D фоноцелевых кадров оптико-электронного прибора // Оптический журнал. 2018. Т. 85. № 5. С. 34–45. http://doi.org/10.17586/1023-5086-2018-85-05-34-45
Yagolnikov S.V., Khramichev A.A., Katulev A.N. Stability indices and evaluation of an algorithm for recognizing the type of a dynamic object detected on a finite sequence of 2D baseline frames of an optoelectronic device [in Russian] // Opticheskii Zhurnal. 2018. V. 85. № 5. P. 34–45. http://doi.org/10.17586/1023-5086-2018-85-05-34-45
S. V. Yagol’nikov, A. A. Khramichev, and A. N. Katulev, "Stability indices and evaluation of an algorithm for recognizing the type of a dynamic object detected on a finite sequence of 2D baseline frames of an optoelectronic device," Journal of Optical Technology. 85(5), 281-290 (2018). https://doi.org/10.1364/JOT.85.000281
This paper proposes robustness indices for an algorithm for recognizing the type of a dynamic object and a probability-distribution law for the sufficient recognition statistics formed by the algorithm when there is a priori indeterminacy. The law is used to validate the algorithm. The wavelet–fractal-correlation algorithm implements a vector criterion of the ratios of the likelihood functions of simple alternative hypotheses—the types of objects invariant to the features of their trajectories. The likelihood functions are reconstituted by modeling over assemblages of implementations of fractal dimensions, energies of the wavelet spectra, and the maximum eigenvalues of displaced correlation matrices as functionals of the coordinates of the spatial position of various types of actual objects measured by an optoelectronic device. Modeling is used to confirm that the algorithm is stable and highly efficient.
algorithm, robustness, vector criterion, recognition statistics, type of dynamic object, algorithm efficiency
Acknowledgements:The research was supported by the Ministry of Education and Science of the Russian Federation (Minobrnauka) (2.1777.2017).
OCIS codes: 1102960, 1002000
References:1. A. N. Katulev and A. A. Khramichev, “Wavelet/fractal correlation algorithm for type recognition of a dynamic object detected by an optoelectronic device,” J. Opt. Technol. 84(4), 237–245 (2017) [Opt. Zh. 84(4), 25-34 (2017)].
2. A. A. Potapov, Yu. V. Gulyaev, S. A. Nikitov, A. A. Pakhomov, and V. A. German, The Latest Methods of Image Processing (Fizmatlit, Moscow, 2008).
3. V. A. Pon’kin, É. V. Peteshchenkov, E. M. Afanas’eva, I. P. Bostynets, O. I. El’tsov, I. V. Laptev, and A. Yu. Semenyakin, Optical Perceptibility of Aircraft (Nauchnaya Kniga, Voronezh, 2015).
4. B. A. Alpatov, P. V. Babayan, O. E. Balashov, and A. I. Stepashkin, Methods of Automatically Detecting and Tracking Objects: Image Processing and Guidance (Radiotekhnika, Moscow, 2008).
5. S. M. Borzov, “The detection of dynamic objects from spatiotemporal anomalies in video sequences,” Avtometriya 49(1), 11–17 (2013).
6. D. G. Khafizov, “Image recognition of spatial point objects,” Komp’yut. Opt. 17(2), 269–273 (2013).
7. É. Y. Vilkas, Optimality in Games and Decisions (Nauka, Moscow, 1970).
8. D. R. Cox and D. V. Hinkley, Theoretical Statistics (Chapman and Hall, London, 1974; Mir, Moscow, 1978).
9. Yu. G. Sosulin, Theoretical Principles of Radio Detection Finding and Radar (Radio i Svyaz’, Moscow, 1992).
10. S. Z. Kuz’min, Principles of the Theory of Digital Processing of Radio-Direction-Finding Data (Sov. Radio, Moscow, 1974).
11. S. S. Wilks, Mathematical Statistics (Wiley, New York, 1962; Moscow, 1967), p. 13.6.
12. P. J. Huber, “Robust smoothing,” in Robustness in Statistics, R. L. Launer and G. N. Wilkinson, eds. (Academic Press, New York, 1979; Mir, Moscow, 1984), pp. 33–47.
13. L. Z. Kriksunov, Night Viewers (Tekhnika, Kiev, 1975).
14. B. V. Gnedenko, Course of Probability Theory (Nauka, Moscow, 1988).
15. B. A. Sevast’yanov, Course of Probability Theory and Mathematical Statistics (Nauka, Moscow, 1982).
16. H. Cramer, Mathematical Methods of Statistics (Princeton University, Princeton, 1951; Mir, Moscow, 1971).
17. A. K. Mitropol’ski, Technical Statistical Computations (Nauka, Moscow, 1971).
18. S. A. Avazyan, I. S. Enyukov, and L. D. Meshalkin, Applied Statistics, vol. 1, Principles of Modeling and Primary Data Processing (Finansy i Statistika, Moscow, 1983).
19. A. N. Kolmogorov and S. V. Fomin, Elements of the Theory of Functions and Functional Analysis (Nauka, Moscow, 1968).
20. V. S. Korolyuk, N. I. Portenko, A. V. Skorokhod, and A. F. Turbin, Handbook on Probability Theory and Mathematical Statistics (Nauka, Moscow, 1985).
21. Yu. V. Prokhorov and Yu. A. Rozanov, Probability Theory: Main Processes, Limit Theorems, Random Processes (Nauka, Moscow, 1967).
22. A. E. Basharinov and B. S. Fleshman, Methods of Statistical Sequential Analysis and Their Radio Engineering Applications (Sov. Radio, Moscow, 1962).
23. V. A. Malyshev, I. M. Khmarov, O. V. Malyshev, V. Yu. Kanivets, A. S. Mirzoyan, N. G. Kondrashov, and A. S. Vishnyakov, Recognition of Terrestrial Objects and Aircraft by 2D and 3D Optoelectronic Systems (FGUP NTTs Informatika, Moscow, 2013).