ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2018-85-05-46-52

УДК: 528.8, 681.7, 53.082.55

Polarization hyperspectrometers: a review

For Russian citation (Opticheskii Zhurnal):

Горбунов Г.Г., Дричко Н.М., Стариченкова В.Д., Таганов О.К. Поляризационные гиперспектрометры. Обзор // Оптический журнал. 2018. Т. 85. № 5. С. 46–52. http://doi.org/10.17586/1023-5086-2018-85-05-46-52

 

Gorbunov G.G., Drichko N.M., Starichenkova V.D., Taganov O.K. Polarization hyperspectrometers: a review [in Russian] // Opticheskii Zhurnal. 2018. V. 85. № 5. P. 46–52. http://doi.org/10.17586/1023-5086-2018-85-05-46-52  

For citation (Journal of Optical Technology):

G. G. Gorbunov, N. M. Drichko, V. D. Starichenkova, and O. K. Taganov, "Polarization hyperspectrometers: a review," Journal of Optical Technology. 85(5), 291-295 (2018). https://doi.org/10.1364/JOT.85.000291

Abstract:

Several newly developed methods for expanding the volume of information during the remote probing of the Earth are considered. During the past decade and a half, approaches for the remote probing of the Earth have been used to combine hyperspectral and imaging polarimetric systems in order to obtain a complete seven-dimensional volume of data concerning a scene: two spatial coordinates, spectral coordinates, and four polarization coordinates. This information facilitates the increase of the probability of detection and identification of various objects recorded on a heterogeneous background and under difficult conditions.

Keywords:

spectropolarimeter, polarization gratings, hyperspectrometers, remote probing of Earth, Stokes parameters

OCIS codes: 110.4234, 110.5405, 220.0220, 280.4991

References:

1. J. Tyo, D. Goldstein, D. Chenault, and J. Shaw, “Review of passive imaging polarimetry for remote sensing application,” Appl. Opt. 45(22), 5453–5469 (2006).
2. F. Snik, J. Craven-Jones, M. Escuti, S. Fineschi, D. Harrington, A. Martino, D. Mawet, J. Riedi, and J. Tyo, “An overview of polarimetric sensing techniques and technology with applications to different research fields,” Proc. SPIE 9099, 90990B (2014).
3. P. Deschamps, F. Breon, M. Leroy, A. Podaire, A. Bricaud, J. Buriez, and G. Seze, “The POLDER mission: instrument characteristics and scientific objectives,” IEEE Trans. Geosci. Remote Sens. 32(3), 598–615 (1994).
4. J. Deuze, F. Bréon, C. Devaux, P. Goloub, M. Herman, B. Lafrance, F. Maignan, A. Marchand, F. Nadal, and G. Perry, “Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements,” J. Geophys. Res. 106(D5), 4913–4926 (2001).
5. O. Hasekamp and J. Landgraf, “Retrieval of aerosol properties over land surfaces: capabilities of multiple-viewing-angle intensity and polarization measurement,” Appl. Opt. 46(16), 3332–3344 (2007).
6. R. Peralta, C. Nardell, B. Cairns, E. Russell, L. Travis, M. Mishchenko, B. Fafaul, and R. Hooker, “Aerosol polarimetry sensor for the Glory mission,” Proc. SPIE 6786, 67865L (2007).
7. R. Ketchetson and V. Magidov, “Overview of optical components,” Photonics 1(37), 86–90 (2013).
8. D. Diner, A. Davis, B. Hancock, G. Gutt, R. Chipman, and B. Cairns, “Dual photoelastic modulator-based polarimetric imaging concept for aerosol remote sensing,” Appl. Opt. 46(35), 8428–8445 (2007).
9. D. Diner, A. Davis, B. Hancock, S. Geier, B. Rheingans, V. Jovanovic, M. Bull, D. Rider, R. Chipman, A. Mahler, and S. McClain, “First results from a dual photoelastic-modulator-based polarimetric camera,” Appl. Opt. 49(15), 2929–2946 (2010).
10. D. Diner, F. Xu, M. Garay, J. Martonchik, B. Rheingans, S. Geier, A. Davis, B. Hancock, V. Jovanovic, M. Bull, K. Capraro, R. Chipman, and S. McClain, “The Airborne Multiangle SpectroPolarimetric Imager (AirMSPI): a new tool for aerosol and cloud remote sensing,” Atmos. Meas. Technol. 6, 2007–2025 (2013).
11. A.-B. Mahler, S. McClain, and R. Chipman, “Achromatic athermalized retarder fabrication,” Appl. Opt. 50(5), 755–765 (2011).
12. J. S. Tyo and T. S. Turner, “Variable-retardance, Fourier transform imaging spectropolarimeters for visible spectrum remote sensing,” Appl. Opt. 40(9), 1450–1458 (2001).
13. X. Meng, J. Li, T. Xu, D. Liu, and R. Zhu, “High throughput full Stokes Fourier transform imaging spectropolarimetry,” Opt. Express 21(26), 32071–32085 (2013).
14. R. Horstmeyer, R. Athale, and G. Euliss, “Modified light field architecture for reconfigurable multimode imaging,” Proc. SPIE 7468, 746804 (2009).
15. J. Millerd, N. Brock, J. Hayes, M. North-Morris, M. Novak, and J. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE 5531, 304–314 (2004).
16. N. Brock, B. Kimbrough, and J. Millerd, “A pixelated polarizer-based camera for instantaneous interferometric measurements,” Proc. SPIE 8160, 81600W (2011).
17. J. S. Tyo, C. F. LaCasse, and B. M. Ratliff, “Total elimination of sampling errors in polarization imagery obtained with integrated microgrid polarimeters,” Opt. Lett. 34(20), 3187–3189 (2009).
18. R. Hardie, D. LeMaster, and B. Ratliff, “Super-resolution for imagery from integrated microgrid polarimeters,” Opt. Express 19(14), 12937–12960 (2011).
19. D. LeMaster and K. Hirakawa, “Improved microgrid arrangement for integrated imaging polarimeters,” Opt. Lett. 39(7), 1811–1814 (2014).
20. H. Sarkissian, S. Serak, N. Tabiruan, L. B. Glebov, V. Rotar, and B. Y. Zeldovich, “Polarization-controlled switching between diffraction orders in transverse-periodically aligned nematic liquid crystals,” Opt. Lett. 31(15), 2248–2250 (2006).
21. S. R. Nersisyan, N. Tabiryan, L. Hoke, D. M. Steeves, and B. Kimball, “Polarization insensitive imaging through polarization gratings,” Opt. Express 17(3), 1817–1830 (2009).
22. C. Oh and M. J. Escuti, “Achromatic diffraction from polarization gratings with high efficiency,” Opt. Lett. 33(20), 2287–2289 (2008).
23. M. W. Kudenov, M. J. Escuti, E. L. Dereniak, and K. Oka, “White-light channeled imaging polarimeter using broadband polarization gratings,” Appl. Opt. 50(15), 2283–2293 (2011).
24. K. Oka and T. Kato, “Spectroscopic polarimetry with a channeled spectrum,” Opt. Lett. 24(21), 1475–1477 (1999).
25. K. Oka and T. Kaneko, “Compact complete imaging polarimeter using birefringent wedge prisms,” Opt. Express 11(13), 1510–1519 (2003).
26. M. W. Kudenov, N. A. Hagen, E. L. Dereniak, and G. R. Gerhart, “Fourier transform channeled spectropolarimetry in the MWIR,” Opt. Express 15(20), 12792–12805 (2007).
27. G. van Harten, F. R. Snik, J. H. H. Rietjens, S. J. Martijn, and C. U. Keller, “Spectral line polarimetry with a channeled polarimeter,” Appl. Opt. 53(19), 4187–4194 (2014).
28. C. L. Byrne and J. Graham-Eagle, “Image iterative reconstruction algorithms based on cross-entropy minimization,” Proc. SPIE 1767, 83–92 (1992).
29. B. H. Miles and B. Kim, “Non-scanning computed tomography imaging spectropolarimeters (NS-CTISP): design and calibration,” Proc. SPIE 5432, 155–166 (2004).
30. C. Oh and M. J. Escuti, “Numerical analysis of polarization gratings using the finite-difference time-domain method,” Phys. Rev. A 76, 043815 (2007).
31. W. Johnson, D. O’Connel, E. Dereniak, and E. K. Hege, “Novel calibration recovery technique for an expectation maximization tomographic reconstruction,” Opt. Eng. 43(1), 10–11 (2004).
32. J. Kim and M. J. Escuti, “Snapshot imaging spectropolarimeter utilizing polarization gratings,” Proc. SPIE 7086, 708603 (2008).
33. J. Kim and M. J. Escuti, “Demonstration of polarization grating imaging spectropolarimeter (PGIS),” Proc. SPIE 7672, 767208 (2010).