ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2018-85-05-60-67

УДК: 535.14, 535.34

Nonlinear optical properties of associates of dyes with zinc sulfide nanoparticles

For Russian citation (Opticheskii Zhurnal):

Ганеев Р.А., Болтаев Г.С., Собиров Б.Р.,  Усманов Т., Смирнов М.С., Овчинников О.В., Звягин А.И., Волыхин Д.В., Клюев В.Г. Нелинейно-оптические свойства ассоциатов красителей и наночастиц сульфида цинка // Оптический журнал. 2018. Т. 85. № 5. С. 60–67. http://doi.org/10.17586/1023-5086-2018-85-05-60-67

 

Ganeev R.A., Boltaev G.S., Sobirov B.R., Usmanov T., Smirnov M.S., Ovchinnikov O.V., Zvyagin A.I., Volykhin D.V., Klyuev V.G. Nonlinear optical properties of associates of dyes with zinc sulfide nanoparticles [in Russian] // Opticheskii Zhurnal. 2018. V. 85. № 5. P. 60–67. http://doi.org/10.17586/1023-5086-2018-85-05-60-67

For citation (Journal of Optical Technology):

R. A. Ganeev, G. S. Boltaev, B. R. Sobirov, T. Usmanov, M. S. Smirnov, O. V. Ovchinnikov, A. I. Zvyagin, D. V. Volykhin, and V. G. Klyuev, "Nonlinear optical properties of associates of dyes with zinc sulfide nanoparticles," Journal of Optical Technology. 85(5), 302-307 (2018). https://doi.org/10.1364/JOT.85.000302

Abstract:

The Z-scanning method is used to study nonlinear absorption in associates of colloidal zinc sulfide nanoparticles and organic dyes. The nonlinear absorption coefficients of associates of various dyes [thionine, erythrosine, and a pyridine salt of 3,3-di-(γ-sulfopropyl)-4-4,5-5-dibenzo-9-ethylthiacarbocyanine betaine] and ZnS nanoparticles with a mean size of 2 nm are obtained at wavelengths of 1064 and 532 nm of 40-ps pulsed radiation of a YAG:Nd3+ laser. It is presumed that the nonlinear absorption of the ZnS nanoparticles at 1064 nm is caused by three-photon excitation of luminescence centers. The association of the dye molecules with the ZnS nanoparticles reduces the dip in the Z-scanning curves, and this is caused by the acceptor properties of the dyes and probably by the transfer of electron excitations from the luminescence centers of the ZnS nanoparticles to the dye molecules.

Keywords:

colloidal zinc sulfide nanoparticles, dyes, hybrid associates, Z-scanning method, nonlinear light absorption

Acknowledgements:

Some of the research results were obtained on the equipment of the Center of Collective Use of Scientific Equipment, Voronezh State University. The studies were carried out with the financial support of the Ministry of Education and Science of the Russian Federation as part of a state contract of the Ministry of Education and Science of the RF in the area of Research Activity in 2017–2019 (Project No. 3.6672.2017/8.9).

OCIS codes: 190.4710, 190.4720

References:

1. K. K. Innes, B. P. Stoichef, and S. C. Wallace, “Four-wave sum mixing (130–180 nm) in molecular vapors,” Appl. Phys. Lett. 29(11), 715–717 (1976).
2. M. N. R. Ashfold, C. D. Heryet, J. D. Prince, and B. Tutcher, “Competition between resonance-enhanced multiphoton ionisation and third-harmonic generation in acetylene vapour,” Chem. Phys. Lett. 131(4–5), 291–297 (1986).
3. V. F. Lukinykh, S. A. Myslivets, A. K. Popov, and V. V. Slabko, “Nonlinear optical frequency-mixing in dye vapors,” Appl. Phys. B 38(2), 143–146 (1985).
4. R. A. Ganeev, R. I. Tugushev, A. A. Ishchenko, N. A. Derevyanko, A. I. Ryasnyansky, and T. Usmanov, “Characterization of nonlinear optical parameters of polymethine dyes,” Appl. Phys. B 76(6), 683 (2003).
5. A. Ishchenko, The Structure and Spectral-Luminescent Properties of Polymethine Dyes (Naukova Dumka, Kiev, 1994).
6. O. V. Ovchinnikov, M. S. Smirnov, A. S. Perepelitsa, T. S. Shatskikh, and B. I. Shapiro, “Optical power limiting in ensembles of colloidal Ag 2 S quantum dots,” Quantum Electron. 45(12), 1143–1150 (2015) [Kvant. Elektron. (Moscow) 45(12), 1143–1150 (2015)].
7. G. S. Boltaev, B. Sobirov, S. Reyimbaev, H. Sherniyozov, T. Usmanov, M. S. Smirnov, O. V. Ovchinnikov, I. G. Grevtseva, T. S. Kondratenko, H. S. Shihaliev, and R. A. Ganeev, “Nonlinear optical characterization of colloidal solutions containing dye and Ag2 S quantum dot associates,” Appl. Phys. A 122(12), 999 (2016).
8. M. Y. Han, W. Huang, C. H. Chew, L. M. Gan, X. J. Zhang, and W. Ji, “Large nonlinear absorption in coated Ag 2 S/CdS nanoparticles by inverse microemulsion,” J. Phys. Chem. B 102(11), 1884–1887 (1998).
9. S. M. Oak, K. S. Bindra, R. Chari, and K. C. Rustagi, “Two-photon absorption in semiconductor-doped glasses,” J. Opt. Soc. Am. B 10(4), 613–619 (1993).
10. V. S. Dneprovskiı˘, E. A. Zhukov, D. A. Kabanin, V. L. Lyaskovskiı˘, A. V. Rakova, and T. Wumaier, “Nonlinear absorption and refraction of light in a colloidal solution of CdSe/ZnS quantum dots upon two-photon resonant excitation,” Phys. Solid State 49(2), 366–370 (2007) [Fiz. Tverd. Tela 49(2), 352–356 (2007)].
11. V. V. Danilov, A. S. Panfutova, G. M. Ermolaeva, A. I. Khrebtov, and V. B. Shilov, “The optical limitation effect and features of luminescence kinetics in hybrid nanosystems with CdSe/ZnS quantum dots and organic agents,” Opt. Spectrosc. 114(6), 880–885 (2013) [Opt. Spektrosk. 114(6), 967–972 (2013)].
12. R. A. Ganeev, A. I. Ryasnyansky, R. I. Tugushev, and T. Usmanov, “Investigation of nonlinear refraction and nonlinear absorption of semiconductor nanoparticle solutions prepared by laser ablation,” J. Opt. A 5(4), 409–417 (2003).
13. R. A. Ganeev, M. Baba, M. Morita, D. Rau, H. Fujii, A. I. Ryasnyansky, N. Ishizawa, M. Suzuki, and H. Kuroda, “Nonlinear optical properties of CdS and ZnS nanoparticles doped into zirconium oxide films,” J. Opt. A 6(4), 447–453 (2004).
14. N. Venkatram, R. S. S. Kumar, and D. N. Rao, “Nonlinear absorption and scattering properties of cadmium sulphide nanocrystals with its application as a potential optical limiter,” J. Appl. Phys. 100(7),  074309 (2006).
15. W. J. Mir, A. Swarnkar, R. Sharma, A. Katti, K. V. Adarsh, and A. Nag, “Origin of unusual excitonic absorption and emission from colloidal Ag2 S nanocrystals: ultrafast photophysics and solar cell,” J. Phys. Chem. Lett. 6(19), 3915–3922 (2015).
16. O. V. Ovchinnikov, M. S. Smirnov, T. S. Shatskikh, V. Yu. Khokhlov, B. I. Shapiro, A. G. Vitukhnovsky, and S. A. Ambrozevich, “Spectroscopic investigation of colloidal CdS quantum dots—Methylene Blue hybrid associates,” J. Nanoparticle Res. 16(3), 2286 (2014).
17. O. V. Ovchinnikov, M. S. Smirnov, B. I. Shapiro, T. S. Shatskikh, A. N. Latyshev, P. T. H. Mien, and V. Yu. Khokhlov, “Spectral manifestations of hybrid association of CdS colloidal quantum dots with Methylene Blue molecules,” Opt. Spectrosc. 155(3), 340–348 (2013) [Opt. Spektrosk. 155(3), 389–397 (2013)].
18. M. S. Smirnov, O. V. Ovchinnikov, T. S. Shatskikh, A. S. Perepelitsa, A. G. Vitukhnovsky, and S. A. Ambrozevich, “Luminescence properties of hydrophilic hybrid associates of colloidal CdS quantum dots and methylene blue,” J. Lumin. 156, 212–218 (2014).
19. O. V. Ovchinnikov, M. S. Smirnov, B. I. Shapiro, A. O. Dedikova, and T. S. Shatskikh, “Spectroscopic manifestations of hybrid association of CdS colloidal quantum dots with J-aggregates of a thiatrimethine cyanine dye,” Opt. Spectrosc. 119(5), 744–753 (2015) [Opt. Spektrosk. 119(5), 718–727 (2015)].
20. M. S. Smirnov, O. V. Ovchinnikov, P. V. Novikov, A. N. Latyshev, and M. A. Efimova, “Low-threshold power limitation of optical radiation in crystals with sensitized anti-Stokes luminescence,” J. Opt. Technol. 76(11), 744–753 (2009) [Opt. Zh. 76(11), 68–74 (2009)].
21. M. S. Smirnov, O. V. Ovchinnikov, A. O. Dedikova, T. S. Shatskikh, B. I. Shapiro, and A. G. Vitukhnovsky, “Luminescence properties of hybrid associates of colloidal CdS quantum dots with J-aggregates of thiatrimethine cyanine dye,” J. Lumin. 176, 77–85 (2016).
22. R. A. Ganeev, G. S. Boltaev, R. I. Tugushev, T. Usmanov, M. Baba, and H. Kuroda, “Low- and high-order nonlinear optical characterization of C 60 -containing media,” Eur. Phys. J. D 64, 109–114 (2011).
23. O. V. Ovchinnikov, T. S. Kondratenko, I. G. Grevtseva, M. S. Smirnov, and S. I. Pokutnyi, “Sensitization of photoprocesses in colloidal Ag2 S quantum dots by dye molecules,” J. Nanophoton. 10, 033505 (2016).
24. T. S. Kondratenko, O. V. Ovchinnikov, I. G. Grevtseva, and M. S. Smirnov, “Organic–inorganic nanostructures for luminescent indication in the near-infrared range,” Tech. Phys. Lett. 42(4), 365 (2016) [Pis’ma Zh. Tekh. Fiz. 42(7), 59–64 (2016)].
25. M. Kull and J.-L. Coutaz, “Intensity-dependent absorption and luminescence in semiconductor-doped glasses,” J. Opt. Soc. Am. B 7(8), 1463–1472 (1990).
26. K. Uchida, S. Kaneko, S. Omi, C. Hata, H. Tanji, Y. Asahara, and A. Ikushima, “Optical nonlinearities of a high concentration of small metal particles dispersed in glass: copper and silver particles,” J. Opt. Soc. Am. B 11(7), 1236–1243 (1994).
27. H. P. Li, C. H. Kam, Y. L. Lam, and W. Ji, “Optical nonlinearities and photo-excited carrier lifetime in CdS at 532 nm,” Opt. Commun. 190, 351–356 (2001).
28. P. B. Chapple, J. Staromlynska, J. A. Hermann, T. J. Mckay, and R. G. McDuff, “Single-beam Z-scan: measurement techniques and analysis,” J. Nonlinear Opt. Phys. Mater. 6(3), 251–296 (1997).
29. R. A. Ganeev, I. A. Kulagin, A. I. Ryasnyansky, R. I. Tugushev, and T. Usmanov, “Characterization of nonlinear optical parameters of KDP, LiNbO 3 and BBO crystals,” Opt. Commun. 229(1–6), 403–412 (2004).
30. J. K. Zaręba, J. Szeremeta, M. Waszkielewicz, M. Nyk, and M. Samoc, “Nonlinear optical response of Prussian blue: strong three-photon absorption in the IR region,” Inorg. Chem. 55, 9501–9504 (2016).
31. S. Wang, F. Wang, B. Zhu, S. Dai, Y. Gu, and J. Zhang, “Surface-tuned three-photon absorption of CdSe nanocrystals in near-infrared,” Appl. Phys. B 123, 195 (2017).